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OPTIMISTIC AND PESSIMISTIC APPROACHES FOR COOPERATIVE GAMES

ATA ATAY AND CHRISTIAN TRUDEAU

ABSTRACT. Cooperative game theory aims to study how to divide a joint value created by a

set of players. These games are often studied through the characteristic function form with

transferable utility, which represents the value obtainable by each coalition. In the pres-

ence of externalities, there are many ways to define this value. Various models that account

for different levels of player cooperation and the influence of external players on coalition

value have been studied. Although there are different approaches, typically, the optimistic

and pessimistic approaches provide sufficient insights into strategic interactions. This paper

clarifies the interpretation of these approaches by providing a unified framework. We show

that making sure that no coalition receives more than their (optimistic) upper bounds is al-

ways at least as difficult as guaranteeing their (pessimistic) lower bounds. We also show that

if externalities are negative, providing these guarantees is always feasible. Then, we explore

applications and show how our findings can be applied to derive results from the existing

literature.
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1. Introduction

Cooperative game theory primarily focuses on groups of players collaborating and pool-

ing their profits/costs. A central question in this field is how the profits (or costs) of a joint

effort can be divided among the members of these coalitions. A cooperative game is a char-

acteristic function that specifies the value obtainable by each coalition of players. We focus

on games with transferable utility (TU), which assume that each coalition can distribute its

value in any way among its members. 1

It is, however, not always straightforward to determine the value that should be cred-

ited to a coalition, as the behavior of other agents can influence this value. Various models

have emerged to address the spectrum of player cooperation levels. These models include

multi-choice games (Hsiao and Raghavan, 1993), where players exhibit differing degrees of

partial cooperation. Additionally, fuzzy cooperative games (Aubin, 1981) consider a range

of participation levels for players, spanning from non-cooperation to full cooperation. Fur-

thermore, partition function form games (Kóczy, 2018) account for all the ways in which

the behavior of players outside the coalition influences the value attainable by a coalition.

While these contributions allow to account for the behavior of external players, it is of-

ten enough to limit the analysis to two opposing and extreme perspectives to sufficiently

capture the dynamics of strategic interactions: the optimistic and pessimistic approaches.

The details of these approaches depend on the specific characteristics of the game under

consideration.

Along these lines, Curiel and Tijs (1991) introduced two operators, minimarg and maxi-

marg, which determine each coalition’s marginal contribution based on the worst and best

possible order of agents, respectively. The minimarg assigns the smallest marginal con-

tribution, while the maximarg assigns the largest, embodying pessimistic and optimistic

viewpoints, respectively. Iteratively applying these operators to a game leads to a convex

and concave game in the limit, with these games being dual to each other. Our approach

differs by arguing that the best/worst cases are closely linked to the possibility of moving

first/last.

Our first objective is to align the optimistic and pessimistic approaches with solution

concepts in cooperative game theory. Given the main aim of cooperative game theory is

distributing profits/costs among agents, we focus on two key solution concepts: the core

and the anti-core.

The core (Gillies, 1959) is the set of allocations that distribute the total value while en-

suring that each coalition receives at least its intrinsic value. Conversely, the anti-core is

constructed by inverting the core inequalities (see, for instance, Oishi et al., 2016).

1See Peleg and Sudhölter (2007) for a comprehensive introduction to cooperative games.
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In the context of the pessimistic approach, the objective is to guarantee that every coali-

tion attains at least its worst-case scenario, where the total payoff to its members is no less

than the lower-bound value on what they collectively generate. On the other hand, the

optimistic approach seeks to prevent any coalition from surpassing its best-case scenario,

and the corresponding solution concept is the anti-core. This concept is rooted in consider-

ations of fairness (Van Essen and Wooders, 2023) but also serves as a measure of stability,

as any coalition exceeding its best-case scenario may cause other agents to withdraw from

cooperation.

Once we have defined these best- and worst-case scenarios, it is not immediately evident

whether there exists a connection between the objective to ensure the pessimistic lower

bounds and the goal of preventing anyone from exceeding the optimistic upper bounds.

Our central findings provide the answers: i) the task of guaranteeing allocations that do not

exceed the optimistic upper bounds is always at least as challenging as securing allocations

surpassing the pessimistic lower bounds, provided that we have defined optimistic and

pessimistic bounds in a compatible way, which we explain below, and ii) if externalities are

negative, both objectives are always feasible. There is no such guarantee if externalities are

positive.

Using a general model accommodating both direct and indirect externalities, we build

two families of coalitional games. In the first family, we suppose that a coalition has the

initial choice of selecting actions from its feasible options. Our approach allows for ver-

satility with respect to the coalition’s objective function. Specifically, we investigate one

version where the coalition maximizes the welfare of its own members and another where

it maximizes the overall welfare of all players. This dichotomy reflects how we address

externalities imposed on others: the former ignores it, as a coalition acts selfishly, while the

latter forces the coalition to acknowledge the (direct) externalities imposed on other play-

ers. In the second family of games, we shift the perspective, considering a scenario where a

coalition is the last to select its actions. In this case, we presume that the other players have

already made their optimal choices when selecting first, providing the desired consistency

between the two approaches.

We obtain in Theorem 1 the relationships between the anti-core and core of the resulting

cooperative games: (i) the anti-core of the game where coalitions make the initial choice is a

subset of the core of the game where coalitions select last, and (ii) conversely, the anti-core

of the game where coalitions picks last is a subset of the core of the game where coalitions

have the first choice.

To make this result meaningful, we transition from choosing first or last to optimistic

and pessimistic approaches. This transition becomes particularly straightforward when the

sign of the externalities is clear. When externalities are negative, the optimistic approach
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is to assume that a coalition is a first-mover, while the pessimistic approach suggests the

opposite. Conversely, with positive externalities, the optimistic approach is to suppose that

a coalition moves last, while the pessimistic approach recommends the opposite. Reinter-

preting Theorem 1, we obtain our main contribution: the anti-core of the optimistic game

is always a subset of the core of the pessimistic game. Given that in most applications the

sign of the externalities is clear, this result is widely applicable. Moreover, if externalities

are negative, Theorem 2 shows that the anti-core of the optimistic game is always non-

empty. Combining with Theorem 1, the core of the pessimistic game is also non-empty

in the case of negative externalities. Essentially, this corollary addresses a central ques-

tion in the literature, namely, the balancedness of the pessimistic game. It is particularly

striking that we are able to obtain this result with very little structure; the result is thus

widely applicable. The anti-core of the optimistic game is also more than a tool to ensure

the non-emptiness of the core of the pessimistic game; it is, in fact, a refinement of it.

We apply our results to various well-studied applications. These applica-

tions build on the links between TU games and joint optimization problems (see,

among others, Kalai and Zemel, 1982a; Kalai and Zemel, 1982b; Granot and Granot,

1992). We study applications in which the optimistic and pessimistic approaches

are meaningful: queueing theory (Maniquet, 2003; Chun, 2006), minimum cost

spanning tree problems (Bergantiños and Vidal-Puga, 2007a), river sharing problems

(Ambec and Sprumont, 2002), pipeline externalities problems (Trudeau and Rosenthal,

2023), the location of a facility (Laurent-Lucchetti and Leroux, 2011) and knapsack prob-

lems (Arribillaga and Bergantiños, 2022). As our general model encompasses these appli-

cations, we reobtain and reinterpret many classic results, while new results also emerge.

In some other applications, optimistic and pessimistic approaches yield dual games. We

show the necessary and sufficient condition for this to occur: the sequential and selfish de-

cisions of a coalition picking first and its complement picking last must always yield an op-

timal outcome for the grand coalition. (Proposition 2). Hence, we establish the coincidence

between the anti-core of the pessimistic game and the core of the optimistic game when the

games defined on the order of coalitions arrival are dual (Corollary 4). We illustrate dual-

ity by means of two well-known applications, bankruptcy (claims) and airport problems

(see O’Neill (1982) and Littlechild and Owen (1973) respectively) and show the thin line be-

tween duality or no duality with cooperative production problems (Moulin and Shenker,

1992).

The paper is organized as follows. Section 2 provides some preliminaries on TU games.

Section 3 introduces the model. We discuss how an optimistic (pessimistic) approach can be

interpreted as an upper (lower) bound, and hence the anti-core (core) should be analyzed.
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In Section 4 we provide the main result: the relationships between the core and the anti-

core of considered games and conclude that the anti-core of the optimistic game is always a

subset of the core of the pessimistic game. In Section 5 we apply our model to a wide range

of applications that have been well-studied in the literature. In Section 6 we show that,

under the presence of duality, the consideration of the two distinct approaches becomes

unnecessary. To interpret this, we provide two applications that exhibit duality. Finally,

Section 7 concludes.

2. Preliminaries

A cooperative game with transferable utility (or TU game) is defined by a pair (N, v) where

N is the (finite) set of agents and v is a value function that assigns the value v(S) to each

coalition S ⊆ N with v(∅) = 0. The number v(S) is the worth of the coalition. Whenever

no confusion may arise as to the set of players, we will identify a TU game (N, v) with its

value function v.

Given a game v, an allocation is a tuple x ∈ R
N representing players’ respective allot-

ment. The total payoff of a coalition S is denoted by x(S) = ∑i∈S xi with x(∅) = 0. An

allocation is efficient if x(N) = v(N), individually rational if x(i) ≥ v({i}) for all i ∈ N, and

coalitionally rational if x(S) ≥ v(S) for all S ⊆ N.

An allocation is said to be in the core of v if it is efficient and coalitionally ra-

tional. Then, the core of the game v is the set of all such allocations: C(v) =
{

x ∈ R
N : x(S) ≥ v(S) for all S ⊂ N and x(N) = v(N)

}

. An allocation is said to be in

the anti-core of v if it is efficient and for all coalitions the reversed coalitional rational-

ity inequalities hold. Then, the anti-core of the game v is the set of all such allocations:

A(v) =
{

x ∈ R
N : x(S) ≤ v(S) for all S ⊂ N and x(N) = v(N)

}

.

Let λ : 2N \ {∅} → [0, 1] where for all i ∈ N we have ∑S⊆N:S∋i λS = 1. Let Λ be the set

of such balanded weights λ. A game is balanced if ∑S⊆N λSv(S) ≤ v(N) for all λ ∈ Λ. A

game v has a non-empty core if and only if it is balanced (Bondareva, 1963; Shapley, 1967).

A game is anti-balanced if ∑S⊆N λSv(S) ≥ v(N) for all λ ∈ Λ. A game v has a non-empty

anti-core if and only if it is anti-balanced.

Convexity and concavity (Shapley, 1971) are conditions that have been extensively stud-

ied to prove balancedness. A game (N, v) is said to be convex if v(T ∪ {i}) − v(T) ≥

v(S ∪ {i}) − v(S) for all i ∈ N and S ⊆ T ⊆ N \ {i}. A game (N, v) is said to be con-

cave if v(T ∪ {i})− v(T) ≤ v(S ∪ {i})− v(S) for all i ∈ N and S ⊆ T ⊆ N \ {i}.

The Shapley value (Shapley, 1953) is a single-valued solution that has interesting fairness

properties. It is the weighted sum of the agents’ marginal contributions to all coalitions.

Formally, given a game (N, v), the Shapley value Sh(v) assigns to each agent i ∈ N the

payoff Shi(v) = ∑
S⊆N\{i}

|S|!(|N|−|S|−1)!
|N|!

[v(S ∪ {i})− v(S)].
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A game (N, v∗) is the dual game of the game (N, v) if v∗(S) = v(N) − v(N \ S) for all

S ⊆ N.

For dual games, it is well-known that the anti-core of v coincides with the core of v∗, and

vice versa.

Proposition 1. If v and v∗ are dual, then A(v) = C(v∗) and A(v∗) = C(v).

2.1. Optimistic and pessimistic approaches. It is not always trivial to determine what

value to assign to a coalition. In the presence of externalities, the value depends on as-

sumptions we make about the behavior of agents external to the coalition considered. Two

(opposite) approaches have been extensively studied in the literature. Both take into ac-

count how N \ S behave depending on the structure of the problem and its associated TU

game.

The first approach is the optimistic approach. Under the optimistic approach, each coali-

tion is assigned a value corresponding to a best-case scenario which we can interpret as an

upper bound on the value coalition S can achieve. Thus, the relevant concept to study is

the anti-core under the optimistic approach as it is the set of efficient payoff vectors that

assigns to each coalition at most its value.

The second approach is the pessimistic approach. Under the pessimistic approach, each

coalition is assigned a value corresponding to a worst-case scenario which we can interpret

as a lower bound on the value coalition S can achieve. Thus, the relevant concept to study

is the core under the pessimistic approach as it is the set of efficient payoff vectors that

assigns to each coalition at least as much as its value.

3. The Model

Each agent i ∈ N can take actions, with the set of possible actions defined as Ai. For each

agent, the null action ∅ ∈ Ai means that one possible action is to stay inactive. For each

S ⊆ N, we define as A
S =×

i∈S

Ai the sets of actions jointly available to S and A ≡ A
N.

For each agent i ∈ N we have a revenue function Ri : A
N → R. Let R represent the set

of individual revenue functions. When agents choose their actions, some actions might not

be available. We thus define the feasible set, which depends on the actions of other agents.

More precisely, for all S ⊆ N and all aN\S ∈ A
N\S, fS(aN\S) ⊆ A

S represents the set of

actions jointly feasible for S. We suppose that these sets are always non-empty. Since the

coalition N includes all players, we write fN instead of fN(∅). Let f represent the set of all

such feasibility functions for all coalitions S.

The grand coalition faces an optimization problem that we generally write as

maxaN∈ fN ∑i∈N Ri(aN). We define a problem P as (A, f , R), which describes the set of

actions, the feasibility sets, and the revenue functions. We suppose that problem P =
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(A, f , R) has a solution and that for all i ∈ N we have Ri(∅N) = 0. Let P be the set of all

such problems (for all A, f , R).

Example 1. We use as a running example a simple queueing problem. All agents in N have

one single job to be processed on a machine. The machine can process one job per period,

and agents have linear waiting costs: if agent i’s job is processed in period t, he suffers a

cost of t × wi, where wi ≥ 0 is his personal waiting cost parameter.

In this context, we can set Ai = {0, . . . , |N|} to be theset of periods in which i’s job

could be processed. Then, for any S ⊆ N, fS(∅N\S) represents what is jointly feasible for

S if N \ S is inactive, i.e., if their jobs are not processed. We then have that fS(∅N\S) is a

function θS : S → A
S such that θS

i 6= θS
j for all i, j different in S. In words, no two agents in

S can be assigned the same processing period.

For aN\S 6= ∅N\S, we have the additional constraint that θS
i 6= aj for all i ∈ S and

j ∈ N \ S. Stated otherwise, the agents in S cannot be assigned to a period already occupied

by an agent in N \ S.

Finally, we have Ri(aN) = −wiai for all i ∈ N, i.e., each agent has a disutility wi per pe-

riod waiting before the job is processed. We can thus rewrite the problem of the grand coali-

tion as maxθ∈Θ(N) ∑i∈N −θiwi where Θ(N) is the set of bijections from N to {0, . . . , |N|− 1}.

3.1. Externalities. We say that a problem only has indirect externalities if for all i ∈ N, all

ai ∈ Ai and all aN\i, a′
N\i

∈ A
N\i we have that Ri

(

{ai , aN\i}
)

= Ri

(

{ai , a′
N\i

}
)

. Let P I be

the set of all such problems.

We say that a problem only has direct externalities if for all S ⊆ N, and all aN\S, a′
N\S

∈

A
N\S we have that fS(aN\S) = fS(a

′
N\S

). Let PD be the set of all such problems.

We say that a problem exhibits negative externalities if for all i ∈ S ⊆ N, all

aS ∈ A
S, and all aN\S ∈ A

N\S we have fS(aN\S) ⊆ fS(∅N\S) and Ri

(

{aS, aN\S}
)

≤

Ri

(

{aS, ∅N\S}
)

. Let P− be the set of all such problems.

We say that a problem exhibits positive externalities if for all i ∈ S ⊆ N, all aS ∈ A
S, and

all aN\S ∈ A
N\S we have fS(aN\S) ⊇ fS(∅N\S) and Ri

(

{aS, aN\S}
)

≥ Ri

(

{aS, ∅N\S}
)

.

Let P+ be the set of all such problems.

Let P e = P− ∪ P+ be the set of problems with clearly defined externalities.

3.2. Defining cooperative games. We associate cooperative games to problems in P , with

the constraint for P = (A, f , R) that we have v(N) = maxaN∈ fN ∑i∈N Ri(aN). For S ⊂ N,

we have more flexibility. Because of the externalities, which value to associate to a coalition

S ⊂ N is not clear.

To make sure our proposed methods are clear, we first describe them for the subset of

problems with indirect externalities only, before moving to general problems.
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3.2.1. Problems with indirect externalities only. Because we only have indirect externalities,

we have that Ri depends only on ai. In what follows, we consider the optimal choice for

coalition S, for which we will write Ri(aS) as a shorthand version of Ri((aS)i).

We propose two families of functions that allocate values to coalitions. First, we suppose

that we compute the value created by coalition S as the maximum value it can create by

being the first group to choose their actions. We define such coalition function as2

vF(S, P) = max
aS∈ fS(∅N\S)

∑
i∈S

Ri (aS) ,

where ∅N\S represent all agents in N \ S taking the null action.

We remark that there might be multiple sets of actions for S that maximize the problem

yielding vF(S, P). Which one is picked is irrelevant for the determination of vF(S, P) but it

is important for what follows. Let τ(S) be an ordering of the set of actions in A
S, T (S) be

the set of all such orderings, and let τ = (τ(S))S∈2N give us a ranking for all coalitions.

Let aFτ(S) be the optimal set of actions taken by S, with τ used as a tiebreaker if needed,

such that ∑i∈S Ri

(

aFτ(S)

)

= vF(S, P).

Second, we suppose that coalition S is choosing after N \ S has made its own choice.

More precisely, we suppose that N \ S has optimally chosen its actions when acting first,

that S observes those actions (and their effects on its feasible set), before deciding on its

own set of actions. When choosing its actions, how N \ S has broken ties, if necessary,

could impact S, since the externalities are not the same for all maximizers. Thus, we have

to define the value obtained by the coalition choosing last as a function of the tiebreaker.

Thus, for any τ ∈ T we have that vL,τ(S, P) = maxaS∈ fS(aFτ (N\S)) ∑
i∈N

Ri (aS). Let aLτ(S) be

(one of) the optimal set of actions taken by S such that ∑
i∈N

Ri

(

aLτ(S)

)

= vL,τ(S, P).3

Example 2. We revisit our queueing example. vF supposes that a coalition S has first access

to the machine, and that its members can be assigned to any period. It is easy to see that

it is optimal to first process the jobs of agents with high waiting costs, that is, for i, j ∈ S,

wi > wj ⇒ θi < θj. If wi > 0 for all i ∈ S, then all optimal solutions assign the agents in S

to periods 0 to |S| − 1. If there are some agents i ∈ S such that wi = 0 we are indifferent to

which period they are assigned to. A natural tiebreaker τ would place these agents directly

after the agents with strictly positive waiting cost parameters. Other possible ties (if two or

more agents have the same cost parameters) have no impact on the coalitions choosing last,

but can be broken by allocating earlier periods to agents identified with a smaller index.

2We suppose, in this problem and in subsequent ones, that the optimization problem for coalition S ⊂ N
has a solution.

3While there might be multiple maximizers, here it is of no consequence how the tie is broken.
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With such a tiebreaker τ, aF(S) is a bijection θF,S : S → {0, . . . , |S| − 1} such that wi <

wj ⇒ θF,S
i < θF,S

j . Then, vL,τ is such that S considers that the first |N \ S| − 1 periods

are occupied. Thus, we have aLτ(S) is a bijection θL,S : S → {|N| − |S|, ..., |N|} such that

wi < wj ⇒ θL,S
i < θL,S

j .

3.2.2. General problems. For general problems, we still want to define a value function when

S picks first, and one when it picks last. However, in the presence of direct externalities,

there are additional difficulties.

A first point to consider is that if S chooses first, its actions impose a direct externality

on N \ S. Should these be credited to S, or not? We propose two families of functions that

allocate values to coalitions.

We first suppose that coalition S ⊂ N ignores these externalities and simply maximizes

the revenues of its members. We define such coalition function as

vF(S, P) = max
aS∈ fS(∅N\S)

∑
i∈S

Ri

(

{aS, ∅N\S}
)

,

where ∅N\S represent all agents in N \ S taking the null action. Let aFτ(S) be the optimal

set of actions taken by S, with ties broken using τ, such that ∑i∈S Ri

(

{aFτ(S), ∅N\S}
)

=

vF(S, P).

Alternatively, we also consider the case where S ⊂ N maximizes the welfare of all agents,

which is equivalent to crediting them with the (direct) externalities they impose on others.

We define such coalition function as

v̂F(S, P) = max
aS∈ fS(∅N\S)

∑
i∈N

Ri

(

{aS, ∅N\S}
)

.

Let âFτ(S) be the optimal set of actions (subject to tiebreaker τ) taken by S such that

∑i∈N Ri

(

{âFτ(S), ∅N\S}
)

= v̂F(S, P).

We now move to the problem of defining the value credited to S when it picks last. As

before, we suppose that S observes the actions chosen by N \ S. We take the point of view

that externalities have to be taken into account somewhere. Thus, we always suppose that

when picking last, S takes into account the externalities of its actions on N \ S. But, if N \ S

has not taken into account the externalities it has imposed on S, then we will have to add

that to the value credited to S.

Once again, our values will depend on the tiebreaker τ. We start with v̂L,τ(S), which

supposes that N \ S has first chosen its actions by taking externalities into account. Then,
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v̂L(S) has S to choose its actions to maximize the additional revenues that its actions gen-

erate. More precisely:

v̂L,τ(S, P) = max
aS∈ f (aFτ (N\S))

∑
i∈N

(

Ri

(

{aS, aFτ(N\S)}
)

− Ri

(

{∅S, aFτ(N\S)}
))

= max
aS∈ f (aFτ (N\S))

∑
i∈N

Ri

(

{aS, aFτ(N\S)}
)

− v̂F(N\S, P)

Let âLτ(S) be (one of) the optimal choices for S in the above problem.

Finally, we consider vL,τ(S), which supposes that N \ S has first chosen its actions by

ignoring externalities. We still assume that S is credited with the extra value that its actions

create on all agents, but to this we now add the externalities imposed by the actions of

N \ S. We thus obtain:

vL,τ(S, P) = max
aS∈ f (aFτ (N\S))

∑
i∈N

(

Ri

(

{aS, aFτ(N\S)}
)

− Ri

(

{∅S, aFτ(N\S)}
))

+ ∑
i∈S

Ri

(

{∅S, aFτ(N\S)}
)

= max
aS∈ f (aFτ (N\S))

∑
i∈N

Ri

(

{aS, aFτ(N\S)}
)

− ∑
i∈N\S

Ri

(

{∅S, aFτ(N\S)}
)

= max
aS∈ f (aFτ (N\S))

∑
i∈N

Ri

(

{aS, aFτ(N\S)}
)

− vF(N\S, P)

Let aLτ(S) be (one of) the optimal choices for S in the above problem.

Thus, both v̂L,τ and vL,τ have the same form: each credits a coalition S with the total

value generated when constrained by the initial choice of N \ S, to which we subtract what

was credited to N \ S.

Going back to the problems with indirect externalities only, we make two remarks. First,

because the revenues of an agent depend only on its actions, we have that vF = v̂F. Second,

because the revenues are individually separable, crediting a coalition for the value its initial

choice has created simply implies that it maximizes the revenues of its members.

3.3. Optimistic and pessimistic games. When we have negative externalities, it is natural

to define the optimistic game as vo = vF or v̂o = v̂F, depending on whether the coalition

ignores or does not ignore externalities, and the pessimistic game as the value in the cor-

responding game where the coalition picks last. Recall that these values might depend on

the tiebreaker used. While we could use any tiebreaker, we use the so-called pessimistic

tiebreaker τp, such that if there is a tie when S picks first, it picks the maximizer that is the

worst for N \ S. Thus, vp = vL,τp
or v̂p = v̂L,τp

.

When we have positive externalities, it is natural to define the pessimistic game as vp =

vF or v̂p = v̂F. The optimistic game is then defined with the values generated when picking

last. We now use the optimistic tiebreaker τo, in which the coalition picking first breaks ties
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by choosing the maximizer that is most favorable for the complement set. Thus, vo = vL,τo

or v̂o = v̂L,τo
.

Example 3. In our queueing example, we have negative indirect externalities, as the pres-

ence of other players reduces the feasible set for S. Thus, vo = vF and vp = vL,τp
. Notice

that for queueing problems τp is what we defined earlier as one of the natural tiebreakers

in which agents with wi = 0 are still placed as early as possible, resulting in the assumption

that if S picks last, it can only use the last |S| periods.

4. Main results

We now provide our main results. We first establish relationships between the two fam-

ilies of games defined. We first establish links between games where a coalition picks first

and games where coalitions pick last, before moving to links between optimistic and pes-

simistic games.

Theorem 1. For all P = (A, f , R) ∈ P and all τ ∈ T we have that

(i) A
(

vF(·, P)
)

⊆ C
(

vL,τ(·, P)
)

;

(ii) A
(

vL,τ(·, P)
)

⊆ C
(

vF(·, P)
)

;

(iii) A
(

v̂F(·, P)
)

⊆ C
(

v̂L,τ(·, P)
)

;

(iv) A
(

v̂L,τ(·, P)
)

⊆ C
(

v̂F(·, P)
)

.

Proof. We start with part (i). Fix τ ∈ T . Fix P, and thus write vF(S) and vL,τ(S) instead of

vF(S, P) and vL,τ(S, P). Let v(N) ≡ maxaN∈ fN ∑i∈N Ri(a
N). Notice that vF(N) = vL,τ(N) =

v(N).

An allocation x ∈ A
(

vF
)

if v(N) − vF(N \ S) ≤ x(S) ≤ vF(S) for all S. An allocation

x ∈ C
(

vL,τ
)

if vL,τ(S) ≤ x(S) ≤ v(N)− vL,τ(N \ S). It is easy to see that A
(

vF
)

⊆ C
(

vL,τ
)

if and only if v(N) ≥ vF(S) + vL,τ(N \ S) for all S. Fix S and let a∗N be (one of) the optimal

set(s) of actions taken by N. Then, v(N) = ∑
i∈N

Ri(a
∗
N), vF(S) = ∑

i∈S
Ri

(

{aFτ(S), ∅N\S}
)

and

vL(N \ S) = ∑
i∈N

Ri

(

{aFτ(S), aLτ(N\S)}
)

− vF(S). We thus have that

vF(S) + vL(N \ S) = vF(S) + ∑
i∈N

Ri

(

{aFτ(S), aLτ(N\S)}
)

− vF(S)

= ∑
i∈N

Ri

(

{aFτ(S), aLτ(N\S)}
)

≤ ∑
i∈N

Ri(a
∗
N)

= v(N),

where the inequality follows from the fact that, by definition, (aFτ(S), aLτ(N\S)) ∈ fN.
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Next, we show (ii). An allocation x ∈ A
(

vL,τ
)

if v(N) − vL,τ(N \ S) ≤ x(S) ≤ vL,τ(S)

for all S. An allocation x ∈ C
(

vF
)

if vF(S) ≤ x(S) ≤ v(N) − vF(N \ S). It is easy to see

that A
(

vL,τ
)

⊆ C
(

vF
)

if and only if v(N) ≥ vL,τ(S) + vF(N \ S) for all S, which we have

already shown in the proof of part (i). The proofs of parts (iii) and (iv) are identical. �

Recall that when we have negative externalities, vo = vF or v̂o = v̂F, and vp = vL,τp
or

v̂p = v̂L,τp
. Moreover, when we have positive externalities, vo = vL,τo

or v̂o = v̂L,τo
, and

vp = vF or v̂p = v̂F. Hence, we have the following corollary to Theorem 1, which states

that whenever the sign of the externalities are clear, the anti-core of the optimistic game is

a subset of the core of the pessimistic game.

Corollary 1 (of Theorem 1). For all P ∈ P e we have that A (vo(·, P)) ⊆ C (vp(·, P)) and

A (v̂o(·, P)) ⊆ C (v̂p(·, P)).

Proof. We show that A (vo) ⊆ C (vp). If P ∈ P−, then vo = vF and vp = vL,τp
. The result

follows from the first part of Theorem 1. If P ∈ P+, then vo = vL,τo
and vp = vF. It follows

from the second part of Theorem 1.

The proof for A (v̂o) ⊆ C (v̂p) is identical. �

For the remainder of the paper, given that the results do not depend on the chosen

tiebreaker, we do not explicitly mention them.

Next, we show that when we have negative externalities the anti-core of the optimistic

game is always non-empty.

Theorem 2. For all P ∈ P−, A (vo(·, P)) is non-empty.

Proof. Fix P ∈ P− and write vF(S) and vo(S) instead of vF(S, P) and vo(S, P). Since P ∈ P−

we have that vo = vF.

Let a∗ be (one of) the maximizer(s) for the problem of the grand coalition. We first show

that vo(S) ≥ ∑
i∈S

Ri (a
∗).

We have that

vo(S) = ∑
i∈S

Ri

(

{aF(S), ∅N\S}
)

≥ ∑
i∈S

Ri

(

{a∗S, ∅N\S}
)

≥ ∑
i∈S

Ri

(

{a∗S, a∗N\S}
)

= ∑
i∈S

Ri (a
∗) ,
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where the first inequality is because, as we have negative externalities, a∗S ∈ fS

(

a∗
N\S

)

⊆

fS

(

∅N\S

)

and the second, once again as a consequence of negative externalities, because

Ri

(

{a∗S, ∅N\S}
)

≥ Ri

(

{a∗S, a∗
N\S

}
)

for all i ∈ S.

Then, take λ ∈ Λ and multiply the inequality by λS and sum over S to obtain

∑
S⊂N

λSvo(S) = ∑
S⊂N

λS ∑
i∈S

Ri

(

{aF(S), ∅N\S}
)

≥ ∑
S⊂N

λS ∑
i∈S

Ri (a
∗)

= ∑
i∈N

∑
S∋i

λSRi (a
∗)

= ∑
i∈N

Ri (a
∗)

= vo(N).

Thus, vF is anti-balanced and its anti-core is non-empty. �

Combining our two main results, we obtain the following corollary.

Corollary 2. For all P ∈ P−, ∅ 6= A (vo(·, P)) ⊆ C (vp(·, P)).

Thus, with very little structure on the problem other than negative externalities, we are

able to show to non-emptiness of the pessimistic core.

The guarantee of a non-empty anti-core does not carry over to problems with positive

externalities, as illustrated in the following counterexample.

Example 4. Atay and Trudeau (2024) provide a variant of the queueing problem by sup-

posing that agents must buy machines to queue on, and can buy as many machines as they

want. The problem becomes one with positive direct externalities: by itself, a coalition can

only buy its own machines and queue on them; if it joins others, it can still do so, but can

also take advantage of unused time slots on their machines. Atay and Trudeau (2024) show

that the core of the corresponding pessimistic game is sometimes empty, sometimes not.

Given Theorem 1, so is the anti-core of the optimistic game.

5. Applications

Our model allows for both direct and indirect externalities. In practice, most applications

feature only one of the two types. In turn, we discuss several applications. We examine

how optimistic and pessimistic approaches have been defined in each case, how that trans-

late into our framework and if our results allow to reinterpret existing results or obtain

new ones. We begin by examining applications with indirect externalities, followed by
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those with direct externalities, and conclude with applications involving both types of ex-

ternalities. Table 1 below summarizes the applications and how they fit in our framework.

direct externalities

+ 0 -

+

mcst,

river sharing

(ATS doctrine)

indirect

externalities
0 locating facility pipeline extern.

- knapsack

queueing,

river sharing

(UTI doctrine)

TABLE 1. Classification of applications and externalities in our framework

5.1. Indirect externalities. A problem P ∈ P exhibits indirect externalities when in the

optimization problem the presence of other agents does not directly impact the opti-

mizing agent’s payoff but affects its feasible set. Recall that a problem only has indi-

rect externalities if for all i ∈ N, all ai ∈ Ai and all aN\i, a′
N\i

∈ A
N\i we have that

Ri

(

{ai , aN\i}
)

= Ri

(

{ai , a′
N\i

}
)

.

Next, we explore two applications that exhibit indirect externalities to illustrate how our

model applies and can offer new insights into established results.

5.1.1. Queueing problems. We first examine more formally our running example of queue-

ing problems. Consider a set of agents N that each have a job to be processed at one

machine. The machine can process only one job at a time. Each agent i ∈ N incurs waiting

costs wi > 0 per unit of time. The queueing problem determines both the order in which

to serve agents and the corresponding monetary transfers they should receive (see Chun

(2016) for a survey on the queueing problem).

It can be solved by taking various approaches including TU games. Then, Maniquet

(2003) concentrates on the fairness aspect of the problem under the assumption that a coali-

tion is served before the players outside the coalition. The minimal transfer rule4, φmin, is

obtained by applying the Shapley value to vo, the game under this optimistic assumption.

4The minimal transfer rule assigns to each agent a position in the queue and a monetary transfer. The
monetary transfer is equal to half of their unit waiting cost multiplied by the number of agents in front of
them in the queue subtracted by half of the sum of the unit waiting costs of the people behind them in the
queue.
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Alternatively, Chun (2006) assumes that a coalition is served after the non-coalitional mem-

bers. The maximal transfer rule5, φmax, is obtained by applying the Shapley value to vp, the

game under this pessimistic assumption.

In our framework, Ri = −wiri(σ) where ri(σ) is the rank of agent i in the queue σ. Since a

machine cannot serve more than a job at a given time, a queue σ is feasible for any coalition

if there are no i, j ∈ N such that ri(σ) = rj(σ). Then, fS(aF(N\S)) is the feasible set for S

when the coalition N \ S takes the first |N \ S| positions in the queue. Hence, this problem

exhibits negative indirect externalities.

It has been shown that vo is concave and vp is convex, resulting in their Shapley values

being respectively in the anti-core of vo and the core of vp. We thus obtain the following

results.

Theorem 3. For any queueing problem, we have φmin ∈ A(vo) ⊆ C(vp) and φmax ∈ C(vp).

The results that {φmin, φmax} ∈ C(vp) come respectively from Maniquet (2003) and Chun

(2006). We obtain an additional justification for the minimal transfer rule, as it offers alloca-

tions that are below the optimistic bounds and above the pessimistic bounds. The maximal

transfer rule offers allocations above the pessimistic bounds, but not always below the op-

timistic bounds.

5.1.2. Minimum cost spanning tree problems. We have a set of nodes consisting of N0 ≡ N ∪

{0}, where 0 is a special node called the source. Agents need to be connected to the source

to obtain a good or a service. To each edge (i, j) ∈ N0 × N0 corresponds a cost cij ≥ 0,

with the assumption that cij = cji. These costs are fixed costs, paid once if an edge is used,

regardless of how many agents use it. The problem is to connect all agents to the source

at the cheapest cost. Given the assumptions above, among the optimal networks there

always exists a spanning tree, hence the name of the problem. A minimum cost spanning

tree (mcst) problem is (N, c), where c is the list of all edge costs. c is also called a cost

matrix.

In our framework, Ri = −cp(i)i, where p(i) ∈ N0 is the predecessor of i in the unique

path from 0 to i in the spanning tree. The usual assumption is to suppose that a coalition

S cannot use edge (i, j) if i, j ∈ N0 \ S. Then fS(∅) is the set of spanning trees rooted at 0,

while fS(aN\S), for any aN\S such that a
N\S
i 6= ∅ for all i ∈ N \ S also treats the nodes in

N \ S as sources. Thus, we obtain a problem with positive indirect externalities.

Most of the literature has considered the pessimistic game vp, in which a coalition S

connects to the source first, before N \ S. It corresponds here to vF. An exception is

Bergantiños and Vidal-Puga (2007b), which considers the optimistic game vo, in which

5The maximal transfer rule assigns to each agent a position in the queue and a monetary transfer. The
monetary transfer is equal to a half of the sum of the unit waiting costs of her predecessors minus a half of
her unit waiting cost multiplied by the number of her followers.
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coalition S supposes that N \ S has already connected to the source. It corresponds, in

our notation, to vL.

The literature has devoted considerable attention to the notion of irreducible cost matrix

(Feltkamp et al., 1994; Bergantiños and Vidal-Puga, 2007a): since many edges are not used

in any optimal spanning tree, we reduce the cost of these edges as much as possible, under

the constraint that vp(N) does not change. There is a unique way to do so, and irreducible

edge costs can be obtained as follows: take any optimal spanning tree, and for each pair

of nodes (i, j) ∈ N0, look at the (unique) path from one to the other, and assign to (i, j) the

most expensive edge on that path. We then obtain the irreducible cost matrix c̄. Let v̄p and

v̄o be the pessimistic and optimistic games obtained from the irreducible cost matrix.

Theorem 4. (Bergantiños and Vidal-Puga, 2007b). For any mcst problem (N, c) we have

(i) v̄p and v̄o are dual.

(ii) v̄o = vo.

This leads us, using our results, to the following corollary.

Corollary 3. For any mcst problem (N, c) we have A(vo) = C(v̄p).

This result is interesting for two reasons. First, C(v̄p) is called the irreducible core (Bird,

1976), and has been shown to be uniquely characterized by additivity and monotonicity

properties (Tijs et al., 2006; Bergantiños and Vidal-Puga, 2015). Second, our equivalence

with the anti-core of the optimistic game means that we do not need to go through the

modification of the cost matrix into the irreducible matrix to obtain the irreducible core.

5.1.3. River sharing problems. Suppose a river described as a line with agents i being up-

stream of agent j if and only i < j. There is an entry ei ≥ 0 of water at each location i, and

the water that flows at location i can be consumed by agent i or allowed to flow down-

stream. The benefit from water consumption for agent i is given by a strictly increasing

and strictly concave function bi. A water sharing problem is (N, e, b), the set of players,

the vector of water entries, and the collection of benefit functions (Ambec and Sprumont,

2002). The problem for the grand coalition is to maximize joint benefits, under the con-

straint imposed by the flows of water. If xi ≥ 0 is the consumption level of agent i, we

have, for any i ∈ N, that ∑j≤i xi ≤ ∑j≤i ei.

Various coalitional value functions have been defined for the problem, interestingly con-

structed from various doctrines used in international law. Under the unlimited territo-

rial integrity (UTI) doctrine, an agent can consume any water that flows through its lo-

cation. Combined with the assumption that coalition S acts before N \ S, we obtain that

vo,UTI(S) = max(xi)i∈S
∑i∈S bi(xi) under the constraints that ∑ j≤i

j∈S

xi ≤ ∑j≤i ei for all i ∈ S.
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Let xo,UTI(S) be the optimal consumption for S in that context.6 Given the optimistic nature

of the problem, vo,UTI(S) is seen as an upper bound on the welfare of S.

Under the absolute territorial integrity (ATS) doctrine, an agent has absolute right over

the water entry on its territory. Thus, while we still suppose that coalition S acts before

N \ S, it affects the feasibility set: if i, j ∈ S are non-consecutive on the river, S anticipates

that any attempt to transfer water from i to j will fail, as that water will be consumed by

adjoining agents. To properly define the constraints in this new feasible set, we say that a

coalition is consecutive if for any pair of agents in that coalition, adjoining agents are also

in the coalition. Let Γ(S) be the coarsest partition of S into consecutive coalitions. Then,

vo,ATS(S) = ∑T∈Γ(S) max(xi)i∈T
∑i∈T bi(xi) under the constraints that ∑ j≤i

j∈T

xi ≤ ∑ j≤i
j∈T

ei for

all i ∈ T and all T ∈ Γ(S). Let xo,ATS(S) be the optimal consumption for S in that context.

Notice that given the restrictive feasibility set that forces a consecutive coalition to consume

the water of its members, it does not matter if a coalition picks first or last, resulting in

vo,ATS(S) = vp,ATS(S). An immediate consequence is that typicially A(vo,ATS) is empty.

This is not in contradiction with Theorem 2, as under the ATS doctrine the problem now

has positive externalities, as cooperation allows to form bigger consecutive coalitions that

can improve the allocation of water.

Given the pessimistic constraints in the ATS version of the problem, vp,ATS(S) is seen as

a lower bound on the welfare of S.

While the two doctrines yield lower and upper bounds and what is described as op-

timistic and pessimistic approaches, the relationship between the two games cannot be

obtained via our Theorem 1, which would require that in one game S acts after N \ S has

chosen its optimal actions as in the other game. Here, we can complement game vo,UTI

with a game that we call vp,UTI , defined as follows: a coalition S determines its consump-

tion levels after coalition N \ S has chosen xo,UTI(N \ S). This implies that only coalitions of

consecutive agents containing agent n can consume any amount of water. Thus, we have

that vp,UTI(S) = 0 if n /∈ S and vp,UTI(S) = vp,ATS(Sn) otherwise, where Sn is the largest

consecutive coalition in S that contains n. It is thus easy to see that vp,UTI ≤ vp,ATS, and

thus that C(vp,ATS) ⊆ C(vp,UTI).

Ambec and Sprumont (2002) define the downstream incremental allocation rule, which

is such that yDI
i = vo,UTI ({1, . . . , i}) − vo,UTI ({1, . . . , i − 1}) = vp,ATS ({1, . . . , i}) −

vp,ATS ({1, . . . , i − 1}) . We have the following results.

Theorem 5. For all river sharing problem (N, e, b), we have:

(i) (Ambec and Sprumont, 2002): yDI = A(vo,UTI) ∩ C(vp,ATS);

(ii) yDI ∈ C(vp,UTI).

6Under the given assumptions, the maximizer is unique.



18 ATAY AND TRUDEAU

Part (ii) is a simple consequence of our main theorem.

Many extensions of the model have been considered, including to cases where some agents

can be satiated (Ambec and Ehlers, 2008) and cases with multiple springs and bifurcations

(Khmelnitskaya, 2010). See Béal et al. (2012) for a review.

5.2. Direct externalities. A problem P ∈ P exhibits direct externalities when in the opti-

mization problem the action chosen by other agents directly impacts the optimizing coali-

tion’s payoff but does not affect its feasible set. Recall that a problem only has direct exter-

nalities if for all S ⊆ N, and all aN\S, a′
N\S

∈ A
N\S we have that fS(aN\S) = fS(a

′
N\S

).

Next, we explore applications that exhibit direct externalities to illustrate how our model

applies and can offer new insights into established results.

5.2.1. Pipeline externalities problems. Trudeau and Rosenthal (2023) propose the pipeline ex-

ternalities problem, which is closely related to the river sharing problem. Agents are also

located on a line, now modeling a pipeline. Upstream of agent 1 is the source of a desir-

able good (e.g., water, oil, natural gas). The delivery of this good to an agent i however

creates local damages (e.g., pollution, congestion) to the agents upstream. The assumption

is that the marginal benefit of consumption is non-increasing and the marginal damage

is non-decreasing in the flow at each location. The model encompasses the river sharing

problem if we reverse the flow: in river sharing problem the consumption of upstream

agents reduces the potential consumption of agents downstream, while in the pipeline

externalities model the consumption of agents downstream creates negative local exter-

nalities upstream. While the pipeline externalities model can accommodate any convex

damage functions, the river sharing problem and its feasibility constraints are equivalent

to a very specific damage function: the damage is zero until we hit the feasibility constraint

at a given location, and infinite afterwards. The pipeline externalities model is thus better

seen as one with negative direct externalities.

More precisely, Trudeau and Rosenthal (2023) suppose that consumption and flows are

in discrete units. To each agent i ∈ N, a vector ui of non-increasing marginal utilities

and a vector di of non-decreasing marginal damages are associated, resulting in a prob-

lem (N, u, d). The problem of the grand coalition is maxz∈RN
+

∑i∈N

(

∑
zi−zi−1

k=1 ui
k − ∑

zi
k=1 di

k

)

.

Trudeau and Rosenthal (2023) study v̂o, the game in which a coalition S chooses first its

optimal consumption, but considers the (negative) impact its consumption has on other

agents. This is equivalent to the case in which coalition S can use the pipeline as it wishes,

conditional on compensating other agents for the negative externalities it generates. The

complement game v̂p is such that S comes in after N \ S has optimally used the pipeline to

its linking, subject to compensations to other agents. Trudeau and Rosenthal (2023) show
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that while v̂p is not convex, v̂o is concave, and thus they obtain that its Shapley value is in

the anti-core of v̂o.

Theorem 6. (Trudeau and Rosenthal, 2023) For any pipeline externalities problem (N, u, d),

Sh(v̂o) ∈ A (v̂o) ⊆ C (v̂p).

This complements our Theorem 2 that allows us to conclude that ∅ 6= A (vo) ⊆ C (vp).

5.2.2. Locating a socially desirable but locally undesirable facility. Consider the problem of lo-

cating a socially desirable but locally undesirable facility, such as a garbage dump or a jail,

in one of N communities (Laurent-Lucchetti and Leroux, 2011). While each community

i ∈ N receives a benefit bi ≥ 0 if the facility is built, it also prefers that it not be located in

their community, which results in a cost ci. We suppose that communities are ordered in

non-decreasing order of their hosting cost, and we suppose that ∑
n
i=1 bi > c1, so that it is

always optimal to build the facility in community 1. A problem is (N, b, c), where b and c

are respectively the vectors of benefits and hosting costs. This is a problem with positive

direct externalities.

A pessimistic approach would suppose that community S would have to build the facil-

ity in one of its communities, if the benefits of its members warrant it. This corresponds,

in our notation, to vF. In the optimistic approach, S takes into account what N \ S has

chosen in the pessimistic approach. If N \ S has built the facility, S simply free rides on the

location and the value it adds is the sum of the benefits enjoyed by its members. If N \ S

has decided not to build the facility, then S can either build it and locate it in one of its

communities with the cheapest hosting cost, or decide not to build it, if ∑
n
i=1 bi − ci < 0 for

all i ∈ S. This corresponds, in our notation, to vL.7

Laurent-Lucchetti and Leroux (2010) proposes an allocation based on the Lindahl prices:

agent i pays a fraction bi
B of the hosting costs, that is transferred to the host, with B =

∑
n
i=1 bi. Then, for all i ∈ N, the final allocation of net benefit generated by the facility is

yLINDAHL
i = bi(B−c1)

B .

Theorem 7. For all problems (N, b, c), yLINDAHL ∈ C(vp). There are problems (N, b, c) where

yLINDAHL /∈ A(vo).

Proof. To prove the first part, fix a problem (N, b, c) and S ⊂ N. We have that

∑i∈S yLINDAHL
i = b(S)(B−c1)

B where b(S) = ∑i∈S bi, and vp(S) = max{0, b(S)− mini∈S ci}.

By construction, ∑i∈S yLINDAHL
i ≥ 0, so we are left to check that ∑i∈S yLINDAHL

i ≥ b(S)−

mini∈S ci. But it is true if b(S)(B−c1)
B = b(S) − b(S)c1

B ≥ b(S) − mini∈S ci, which simplifies to

mini∈S ci ≥ b(S)c1
B . But we have that mini∈S ci ≥ c1 ≥ b(S)c1

B , as b(S)
B ≤ 1, and thus it is

verified.

7v̂F is well-defined here but seems less natural: In that pessimistic game a coalition builds the facility in
one of its communities if the sum of benefits, for all agents in N, is greater than its cheapest hosting cost.
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The second part is proved by constructing a counterexample. Suppose that N =

{1, 2}, b = (6, 12) and c = (15, 20). It is then optimal to locate the facility in commu-

nity 1, generating a net benefit of 3. We have that yLINDAHL = (1, 2). But consider vo({2}).

When first, community 1 has not built the facility. Community 2, arriving last, can then

either construct the facility at its location and get credit for the net benefit, but since it is

-2, it prefers not to build it, and thus vo({2}) = 0. Since yLINDAHL
2 = 2 > 0 = vo({2}),

yLINDAHL /∈ A(vo). �

5.3. Combined externalities. While the majority of applications typically have one type of

externality, there are some applications that have both types. In this subsection, we present

an application that showcases both direct and indirect externalities to illustrate how our

model applies and can offer new insights into established results.

5.3.1. Knapsack problems. In a knapsack problem, agents have objects with different valua-

tions, while the knapsack has a fixed capacity. Hence, they face an optimization problem

that maximizes the value of the objects carried while respecting the capacity of the knap-

sack. There is a set of agents N that decide which objects in M should be placed in a fixed

size knapsack Q. Each object j ∈ M has a fixed size qj ∈ R+. Then, we can define the

revenue of an agent i ∈ N when a unit of object j ∈ M is added to the knapsack by ri
j. We

denote a knapsack problem by (N, M, Q, q, r). In the literature, it is assumed that each indi-

vidual considers an optimization problem to maximize the social welfare (see for instance

Kellerer et al., 2004). Based on this, Arribillaga and Bergantiños (2022) considers three ap-

proaches. In their optimistic game, it is assumed that the knapsack is filled with objects in

the best way for a coalition S while in their realistic game the knapsack is filled with objects

in the best way for the coalition N \ S and then coalition S maximizes its revenue. In a third

approach, which they call the pessimistic game, the agents in N \ S aim to hurt the agents

in S by filling the knapsack in a way that would be most harmful to coalition S.

In our framework, we observe both direct (objects in the knapsack are public goods) and

indirect externalities (whatever object selected by others reduces the available room in the

knapsack). Consider a coalition S. If it chooses first, then its feasible set is larger than when

it chooses after N \ S since it can fill the knapsack with more objects if it chooses first. That

is, fS(∅N\S) ⊇ fS(aF(N\S). Besides, if coalition S chooses after N \ S, since objects have a

public good nature, the action of N \ S also increases the revenue of S. Nonetheless, unless

N \ S has a limited set of objects that generate positive revenue, it fills the knapsack up

to its capacity. In turn, coalition S will not be able to add any objects if it chooses after

N \ S. Hence, the optimistic approach assumes that coalition S chooses first and maxi-

mizes its own welfare, obtaining vF with action aF(S). Meanwhile, the realistic game of

Arribillaga and Bergantiños (2022) considers that N \ S has filled the knapsack selfishly,



OPTIMISTIC AND PESSIMISTIC APPROACHES FOR COOPERATIVE GAMES 21

before allowing coalition S to add objects, if any room is left. This, in our context, is equiv-

alent to vL. While here we have indirect and direct externalities of opposite signs, it is

easy to verify that for all S ⊆ N, vF(S) ≥ vL(S). Thus, the optimistic approach consists in

choosing first and the pessimistic approach in choosing last.

We use a simple allocation rule, that we call the no-transfer rule, and show that it belongs

to the anti-core of the optimistic game, and thus the core of the pessimistic game. Let

M∗ ⊆ M be (one of) the optimal subset(s) of objects that maximize the welfare of the grand

coalition. Then, we simply allocate to each agent the revenue obtained from these objects:

xnt
i = ∑k∈M∗ ri

k for all i ∈ N.

Theorem 8. For any knapsack problem (N, M, Q, q, r), xnt ∈ A(vo) ⊆ C(vp).

The result easily follows from this observation: selecting M∗ is feasible for coalition S

when they choose first (which is how we obtain their optimistic value). If they pick any-

thing else, it is because that gives them higher joint revenues. Thus, ∑i∈S xnt
i ≤ vo(S) as

desired.

Arribillaga and Bergantiños (2022) also describe their own pessimistic version of the

game, which is much more pessimistic than what was described above: they suppose that

not only coalition S fills the knapsack after N \ S, but that N \ S has purposefully filled

the knapsack with the worst combination for S. This is in contrast to our approach, that

cannot embrace an objective that does not consist of a coalition maximizing its objective

welfare (and possibly the welfare of others). It also leads to a disjoint jump between the

objective functions of coalitions S and N, as that latter coalition must always maximize its

joint benefits. That being said, given that this “extremely pessimistic” approach will lead

to lower values, its core will be a superset of the core of our pessimistic game.

Table 2 summarizes the concepts of action, feasible set, and revenue function for the

applications studied in this section.
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Actions Feasible sets Revenue functions

Queueing Time-slots at which

you are served

Not two agents can

select the same time-

slot

Waiting cost to be

served in given

time-slot

Mcst Agents (or source)

you can directly

connect to

Set of connections

must form a mcst

rooted at the source

Cost to build edge

to the agent you di-

rectly connect to

River sharing Amount of water

consumed

Must satisfy the

feasibility constraint

imposed by the

flow (depends on

doctrine)

Utility of water con-

sumed

Pipeline externali-

ties

Amount of good

consumed

No additional con-

straint

Utility of good con-

sumed net of exter-

nalities imposed by

the flow at your lo-

cation

Locating facility Host or not the facil-

ity

No additional con-

straint

Utility of facility if

someone hosts, mi-

nus hosting cost if

hosting. Zero if no-

body hosts.

Knapsack Goods that can be

carried in knapsack

Group must collec-

tively choose; goods

must fit in knapsack

Utility of the chosen

goods

TABLE 2. Primitives of the model for applications considered in Section 5.

6. Duality

In this section we study the duality between the games defined in Section 3.

Following Proposition 1, it is unnecessary to define optimistic and pessimistic games

when the games vF and vL (or v̂o and v̂p) are dual.

In our framework, vF and vL are dual if and only if for any coalition S, letting S pick

first and N \ S react to that afterward always leads to an efficient outcome. In other words,

an optimal outcome can always be obtained by sequential selfish optimizations by S and

N \ S. A similar result is obtained for v̂F and v̂L.

Proposition 2. For a problem P = (A, f , R) ∈ P , we have that



OPTIMISTIC AND PESSIMISTIC APPROACHES FOR COOPERATIVE GAMES 23

(i) vF and vL are dual if and only if for all S ⊂ N there exists aF(S) and aL(N\S) such that

{aF(S), aL(N\S)} is a maximizer of max
aN∈ fN

∑
i∈N

Ri(aN).

(ii) v̂F and v̂L are dual if and only if for all S ⊂ N there exists âF(S) and âL(N\S) such that

{âF(S), âL(N\S)} is a maximizer of max
aN∈ fN

∑
i∈N

Ri(aN).

Corollary 4 (of Proposition 1). For all P ∈ P e, if vo and vp are dual, then A (vo) = C (vp), and

if v̂o and v̂p are dual, then A (v̂o) = C (v̂p).

6.1. Applications with duality. Two important applications exhibiting duality are bank-

ruptcy (claims) problems and airport problems.

The bankruptcy problem deals with sharing an estate E of a perfectly divisible resource

among agents N who have conflicting claims. That is, the sum of claims is larger than the

estate: ∑
i∈N

ci > E where ci is the claim of agent i. O’Neill (1982) studied such problems

from an economic point of view. He introduced an associated TU game to each bankruptcy

problem and also defined the run-to-the-bank rule based on an average over all possible

orders on agents arrival.

The optimistic approach would correspond to a bank-run situation, in which coalition S

arrives first and collects its combined claim or the endowment, whichever is smallest. The

pessimistic approach has coalition S arriving last, collecting what is left after the bank run

of N \ S. The combination of the optimistic action of S and the pessimistic action of N \ S

always leads to a full distribution of the endowment, and thus to an efficient outcome.

Following Proposition 2, the two games are dual.

The airport problem introduced by Littlechild and Owen (1973) aims to allocate the cost

of a landing strip among users with varying runway length requirements. Every agent i

requires a length li at the runway. It is assumed that the cost to build the runway is non-

decreasing in its length. That is, for any two agents i and j such that li < lj, c(li) ≤ c(lj).

First, take the pessimistic approach and assume that coalition S arrives first to build its

runway. The longest runway required by a member of the coalition will be built, which

is max
i∈S

li. Then, coalition N \ S picks last, which corresponds to its optimistic scenario.

Knowing that a runway of length max
i∈S

li has been built, it extends it, if needed, to a length

of max
i∈N

li, which under the assumption that the valuations are large enough, leads to an

efficient outcome. Hence, the optimistic and pessimistic approaches are dual for airport

problems.

We conclude this section by an illustration of the line between duality and non-duality. In

a cooperative production problem a set of agents share a production technology to produce

some good(s). This joint production technology might exhibit increasing or decreasing

returns to scale/scope.
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If we suppose that demands for the good(s) are exogenous (see for instance

Moulin and Shenker, 1992; Moulin, 1996; de Frutos, 1998), then producing these inelastic

demands is efficient, and this is what we obtain by having S and N \ S sequentially choose.

Thus, the optimistic and pessimistic games are dual.

However, in a problem in which the efficient quantities demanded are en-

dogenously determined (see, for instance Moulin, 1990; Roemer and Silvestre, 1993;

Fleurbaey and Maniquet, 1996), then duality is lost, as S and N \ S choosing sequentially

can lead to under/over production and/or misallocation of the units produced. Thus, in

such models, the optimistic and pessimistic approaches yield different results.

If we have decreasing returns to scale, an optimistic approach supposes that agents in S

first decide how many units to consume, having access to the production technology for

its first (low) marginal costs, which might induce them to overconsume compared to the

optimal allocation. Our Theorem 2 guarantees that the anti-core of the optimistic game

and the core of the pessimistic games are both non-empty. The pipeline externalities model

of Trudeau and Rosenthal (2023), previously mentioned, also generalizes this case, if we

suppose that damages occur only on the first node.

With increasing returns to scale, there is no such guarantee on the non-vacuity of the

(anti-)core.

7. Concluding remarks

In the presence of externalities, defining a coalitional value game requires making as-

sumptions on the behavior of other agents. For many problems, the use of an optimistic

and a pessimistic approach leads to very natural ways to define such games, and these

games form the extreme points of a large family of games. From a normative point of view,

optimistic and pessimistic approaches should be approached with opposite solution con-

cepts, as the former gives us upper bounds, while the latter provides lower bounds. In

particular, if we use the core for games obtained from the pessimistic approach, we should

use the anti-core for the optimistic approach.

We have shown that there is a great benefit in carefully defining these optimistic and

pessimistic approaches. When the sign of the externalities are clearly defined, the opti-

mistic/pessimistic approaches will clearly correspond to a coalition picking first or last,

depending on the sign of these externalities. To properly define optimistic/pessimistic

games that are complementary to each other, we need that the coalition choosing last sup-

poses that the other agents have taken the optimal actions when choosing first. If we do

so, we obtain the powerful result that the anti-core of the optimistic game is a subset of the

core of the pessimistic game. If these externalities are negative, then we are guaranteed that
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the anti-core of the optimistic game is non-empty, and thus so is the core of the pessimistic

game.

Moreover, we see that when the games defined based on whether a coalition chooses

first or last are dual, it is redundant to define both the optimistic and pessimistic games.

Hence, duality establishes the coincidence between the anti-core and the core and is easy

to spot, and these greedy sequential choices still lead to efficient outcomes.

Our main results are useful in multiple ways. First, it clearly indicates which bounds

are easier to satisfy, and even if we believe that the core of the pessimistic game is more

interesting, the anti-core of the optimistic game is a refinement as we see that ensuring that

nobody surpasses the optimistic bounds is more demanding than ensuring that nobody

falls below the pessimistic bounds. In some applications, like in minimum cost spanning

trees, this subset of allocations were shown to possess many interesting additional proper-

ties. Second, this also allows us an additional way to show that the core of the pessimistic

game is non-empty. In fact, if externalities are negative, it is by going through the anti-core

of the optimistic game that we can show that the core of the pessimistic game is always

non-empty. Finally, when many optimistic/pessimistic variants have been proposed, for

instance in the river sharing problem, our approach allows to better compare these games,

as for each optimistic game we can define a corresponding pessimistic game, and vice

versa.

Finally, in the presence of direct externalities, it is not entirely clear how the coalition

choosing first should take into account the externalities imposed on others. We have con-

sidered the two extremes: it either ignores them entirely, or considers them as important

as the impact on coalition members. Our main results can be generalized to cases where

the coalition choosing first considers the impact on others, but not on the same level as

the impacts on its members. Although this generalization is straightforward, we are un-

aware of applications that treat externalities in this manner. A possible open question is

to see whether the anti-core of the optimistic and hence the core of the pessimistic game

has a non-empty core under negative externalities when a coalition maximizes the welfare

of all agents as in the pipeline externalities problems. The technique to prove Theorem 2,

which focuses on the properties of the feasibility sets and revenue functions under negative

externalities, does not extend to v̂o.
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