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a b s t r a c t

We analyze the extent to which two known results of the relationship between the core and the stable
sets for two-sided assignment games can be extended to three-sided assignment games. We find that
the dominant diagonal property is necessary for the core to be a stable set and, likewise, sufficient
when each sector of the three-sided market has two agents. Unlike the two-sided case, the union of the
extended cores of all the µ-compatible subgames with respect to an optimal matching µ may not be a
von Neumann–Morgenstern stable set.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider markets with three different sectors
or sides. Coalitions of agents can only achieve a non-negative
joint profit by means of triplets comprising one agent of each
side. Then, a three-dimensional valuation matrix represents the
joint profit of all these possible triplets. These markets, introduced
by Kaneko and Wooders (1982), are a generalization of the two-
sided assignment games first introduced by Shapley and Shubik
(1972). In a similar vein, Stuart (1997) represents a supplier-firm-
buyer situation using a three-sided assignment market.

In a two-sided assignment game, the two sectors are associated
with a sector of buyers and a sector formed by sellers. Each seller
has one unit of an indivisible good to sell and each buyer wants
to buy at most one unit. The valuation matrix represents the
joint profit obtained by each buyer–seller transaction. From these
valuations a coalitional game is obtained and the total profit under
an optimal matching between buyers and sellers yields the worth
of the grand coalition. A distribution of this worth such that each
agent receives at least his/her individual coalition worth is called
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(M. Núñez).

an imputation. The best known solution concept for the coalitional
game is the core. Roughly speaking, a dominance relation is defined
between imputations and the core is the set of undominated impu-
tations.

Three-sided assignment markets appear naturally when a sup-
plier (or middleman) is needed to match a buyer with a seller, or
when each buyer needs to buy two complementary objects from
two different types of seller to make a profit (for instance, each
buyer needs to buy a computer aswell as the services of an internet
provider). A key difference between the two-sided and the three-
sided assignment games is thatwhile the core is always non-empty
in the case of the former, it may be empty in that of the latter
(Kaneko and Wooders, 1982). This is why we are interested in the
studying of some other set-valued solution concepts, such as stable
sets, for these games.

A vonNeumann–Morgenstern stable set (vonNeumann andMor-
genstern, 1944) is a set of imputations that satisfies internal stabil-
ity and external stability: (a) no imputation in the set is dominated
by any other imputation in the set and (b) each imputation outside
the set is dominated by some imputation in the set. It is known
from Lucas (1968) that a game may have no stable set. Since the
core always satisfies internal stability, it is included in any stable
set; and if the core is externally stable, then it is the only stable set.
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Other notions of stability are analyzed in Roth (1976), Peris and
Subiza (2013), and Han and van Deemen (2016).

The purpose of this paper is to analyze the extent to which
existing results for two-sided markets can be extended to three-
sided markets. In particular, we focus on two existing results of
the relationship between the core and the stable sets. First, we
study whether the dominant diagonal property is a necessary and
sufficient condition for the core to be a stable set, as in two-
sidedmarkets (Solymosi and Raghavan, 2001). Second, we analyze
whether the union of the extended cores of all µ-compatible sub-
games is a stable set of the three-sided assignment game, as in the
two-sided markets (Núñez and Rafels, 2013).

In the case of two-sided assignment games, Solymosi andRagha-
van (2001) show that the core of a two-sided assignment game
is a stable set if and only if the valuation matrix has a dominant
diagonal. Later, Núñez and Rafels (2013) prove the existence of a
stable set for all two-sided assignment games. The stable set they
introduce is the only one to exclude third-party payments with
respect to an optimal matching µ and it is defined through certain
subgames, known as µ-compatible subgames.

In the present paper, we generalize the notion of the dominant
diagonal to the three-sided case and prove that it is a necessary
condition for the core of this game to be a stable set. We also
show that for three-sided markets with only two agents on each
side, the dominant diagonal property suffices to guarantee that the
core is stable. It remains open as to whether it is also sufficient
for arbitrary three-sided assignment markets. Furthermore, we
extend the notion ofµ-compatible subgames introduced by Núñez
and Rafels (2013) to the three-sided case. Then, given a three-sided
game and an optimal matching µ, we consider the set Vµ formed
by the union of the cores of allµ-compatible subgames. In contrast
with the two-sided case, we show that Vµ may not be a stable set.
However, we prove that Vµ is an abstract core if we restrict the set
of feasible payoff vectors to those imputations that are compatible
with µ. Moreover, Vµ coincides with the usual core if and only if
the valuation matrix has a dominant diagonal.

The rest of the paper is organized as follows. In Section 2 we
outline the preliminaries on assignment games. Section 3 extends
the notion of a dominant diagonal valuation matrix and studies
its relationship with core stability. Finally, in Section 4, we extend
the notion of µ-compatible subgames, and show that the union of
their cores may not be a stable set but that it still satisfies some
appealing property.

2. Preliminaries

Let U1, U2, U3 be pairwise disjoint countable sets. Anm×m×m
assignment market γ = (M1,M2,M3; A) consists of three different
sectors with m agents each: M1 = {1, 2, . . . ,m} ⊆ U1, M2 =

{1′, 2′, . . . ,m′
} ⊆ U2, M3 = {1′′, 2′′, . . . ,m′′

} ⊆ U3, and a three-
dimensional valuation matrix A = ⟨(aijk) : i ∈ M1, j ∈ M2, k ∈

M3⟩ that represents the potential joint profit obtained by triplets
comprising one agent from each side. These triplets are the basic
coalitions of the three-sided assignment game, as defined by Quint
(1991).

Given subsets of agents of each sector, S1 ⊆ M1, S2 ⊆ M2,
and S3 ⊆ M3, a matching µ for the submarket γ|S = (S1, S2, S3;
A|S1×S2×S3 ) is a subset of the Cartesian product, µ ⊆ S1 × S2 × S3,
such that each agent belongs to at most one triplet. We denote by
M(S1, S2, S3) the set of all possible matchings. A matching µ ∈

M(S1, S2, S3) is an optimal matching for the submarket if∑
(i,j,k)∈µ

aijk ≥

∑
(i,j,k)∈µ′

aijk

for allµ′
∈ M(S1, S2, S3). We denote byMA(S1, S2, S3) the set of all

optimal matchings for the submarket (S1, S2, S3; A|S1×S2×S3 ).

The m × m × m assignment game, (N, wA), related to the above
assignment market has a player set N = M1 ∪ M2 ∪ M3 and a
characteristic function

wA(S) = max
µ∈M(S∩M1,S∩M2,S∩M3)

∑
(i,j,k)∈µ

aijk

for all S ⊆ N . In the sequel, we need to exclude some agents. Then,
if we exclude some agents I ⊆ M1, J ⊆ M2, and K ⊆ M3, we
can write wA−I∪J∪K instead of wA|(M1\I)×(M2\J)×(M3\K ) . Note that these
subgames need not have the same number of agents in each sector.
Nevertheless, the notion of matching and characteristic function is
defined analogously as for them × m × m case.

Given an m × m × m assignment game, a payoff vector, or an
allocation, is (u, v, w) ∈ Rm

+
× Rm

+
× Rm

+
where ul denotes the

payoff1 to agent l ∈ M1, vl denotes the payoff to agent l′ ∈ M2
andwl denotes the payoff to agent l′′ ∈ M3. An imputation is a non-
negative payoff vector that is efficient, u(M1) + v(M2) + w(M3) =∑

i∈M1
ui +

∑
j∈M2

vj +
∑

k∈M3
wk = wA(M1 ∪M2 ∪M3). We denote

the set of imputations of the assignment game (N, wA) by I(wA).
Given an optimal matching µ ∈ MA(M1,M2,M3), we define

the µ-principal section of (N, wA) as the set of payoff vectors such
that ui + vj + wk = aijk for all (i, j, k) ∈ µ and the payoff to
agents unassignedbyµ is zero.Wedenote this byBµ(wA). Note that
Bµ(wA) ⊆ I(wA). In theµ-principal section, the only side payments
that take place are those between agents matched together by µ.

We can assume that the optimal matching is on the main
diagonal of the valuation matrix, µ = {(i, i′, i′′)|i ∈ {1, 2, . . . ,m}}.
Notice that the allocation (a, 0, 0), that is ui = aiii for all i ∈ M1,
vj = wk = 0 for all j ∈ M2, k ∈ M3, always belongs to the µ-
principal section. The same is true of the allocations (0, a, 0) and
(0, 0, a). These three vertices of the polytope Bµ(wA) are known
as the sector-optimal allocations. The core of a game is the set of
imputations (u, v, w) such that no coalition S can improve upon:
u(S∩M1)+v(S∩M2)+w(S∩M3) ≥ wA(S). In our case, it is easy to
see that it is enough to consider individual and basic coalitions. An
imputation (u, v, w) belongs to the core, (u, v, w) ∈ C(wA), if and
only if for all (i, j, k) ∈ M1×M2×M3 it holds ui+vj+wk ≥ aijk. Note
that, together with efficiency, the above constraints imply that the
core is a subset of theµ-principal section for any optimalmatching
µ.

It is well-known (see Kaneko andWooders, 1982) that the core
of a three-sided assignment game may be empty. For the partic-
ular case in which each sector contains only two agents, Lucas
(1995) gives necessary and sufficient conditions for balancedness
(that is non-emptiness of the core). Under the assumption that
µ = {(1, 1′, 1′′), (2, 2′, 2′′)} is an optimal matching, the core of a
2 × 2 × 2 assignment game is non-empty if and only if it satisfies
the following conditions:

2a111 + a222 ≥ a112 + a121 + a211,

a111 + 2a222 ≥ a221 + a212 + a122. (1)

Given a three-sided assignment market γ = (M1,M2,M3; A),
we define a binary relation on the set of imputations, namely the
dominance relation. Given two imputations (u, v, w) and (u′,v′,w′),
we say (u, v, w) dominates (u′, v′, w′) if and only if there exists
(i, j, k) ∈ M1 × M2 × M3 such that ui > u′

i , vj > v′

j , wk > w′

k and
ui + vj + wk ≤ aijk. We denote it by (u, v, w) dom A

{i,j,k}(u
′, v′, w′).

We write (u, v, w) dom A(u′, v′, w′) to denote that (u, v, w) dom-
inates (u′, v′, w′) by means of some triplet (i, j, k).2 Given a set of

1 Rm
+

is the m-dimensional real vector space with non-negative coordinates.
Hence, to simplify notation, we only consider individually rational payoff vectors.
2 This dominance relation is the usual one introduced by von Neumann and

Morgenstern (1944). It is clear that in the case ofmulti-sided assignment games, we
only need to consider domination via basic coalitions.When no confusion regarding
the valuation matrix can arise, we will simply write (u, v, w) dom (u′, v′, w′).
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imputations V ⊆ I(wA), we denote by D(V ) the set of imputations
dominated by some element in V and by U(V ) those imputations
not dominated by any element in V .

Two main set-valued solution concepts are defined by means
of this dominance relation: the core and the stable set. The core,
whenever it is non-empty, coincides with the set of undominated
imputations; that is, C(wA) = U(I(wA)). The other solution concept
defined bymeans of domination is the vonNeumann–Morgenstern
stable set.

A subset of the set of imputations, V ⊆ I(wA), is a vonNeumann–
Morgenstern solution or a stable set if it satisfies internal and exter-
nal stability:

(i) internal stability: for all (u, v, w), (u′, v′, w′) ∈ V , (u, v, w)
domA(u′, v′, w′) does not hold,

(ii) external stability: for all (u′, v′, w′) ∈ I(wA) \ V , there exists
(u, v, w) ∈ V such that (u, v, w) domA(u′, v′, w′).

Internal stability of a set of imputations V guarantees that no
imputation of V is dominated by another imputation of V : V ⊆

U(V ). The core is internally stable. External stability imposes that
all imputations outside V are dominated by an imputation in V :

I(wA) \ V ⊆ D(V ). In general, the core fails to satisfy external
stability. Both conditions (internal and external stability) can be
summarized as V = U(V ).

The next section addresses the first aim of this paper, namely,
the study of the stability of the core of a three-sided assignment
game.

3. Core stability

In this section, we study whether the known core stability
results for two-sided assignment games can be extended to the
three-sided case. We begin by generalizing the dominant diagonal
property, introduced by Solymosi and Raghavan (2001) for two-
sided assignment games, to the three-sided case. They prove that
this condition characterizes the core stability of the two-sided
case. We assume that the valuation matrix is square, that is, that
each side has the same number of agents on each side. Note that,
whenever necessary,we can assumewithout loss of generality that
an optimal matching is placed on the main diagonal.

Definition 1. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment
game with |M1| = |M2| = |M3| = m. Matrix A has a dominant
diagonal if and only if for all i ∈ {1, 2, . . . ,m} it holds

aiii ≥ max{aijk, ajik, ajki} for all j, k ∈ {1, 2, . . . ,m}.

Clearly, if A has a dominant diagonal, then µ = {(i, i′, i′′) | i ∈

{1, 2, . . . ,m}} is an optimal matching.
As in the two-sided case, the dominant diagonal property char-

acterizes those markets in which giving the profit of each optimal
partnership to one given sector leads to a core element.

Proposition 1. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment
game with |M1| = |M2| = |M3| = m. The valuation matrix A has a
dominant diagonal if and only if all sector-optimal allocations belong
to the core.

Proof. First, we prove the ‘‘if " part. Take the sector-optimal allo-
cation for the first sector: (u, v, w) = (a111, . . . , ammm; 0, . . . , 0; 0,
. . . , 0). If it belongs to the core, then we have aiii = ui = ui +

vj + wk ≥ aijk for all (i, j, k) ∈ M1 × M2 × M3. For the remaining
allocations, the proof is analogous.

To prove the ‘‘only if " part, let A be a three-dimensional val-
uation matrix with the dominant diagonal property. By Defini-
tion 1, for all i ∈ {1, 2, . . . ,m} and for all j, k ∈ {1, 2, . . . ,m},

aiii ≥ max{aijk, ajik, ajki}. If we take the sector-optimal alloca-
tion (u, v, w) = (a111, . . . , ammm; 0, . . . , 0; 0, . . . , 0), the above
inequality trivially shows that it belongs to the core. Analogously,
(0, a, 0) and (0, 0, a) are also core allocations. □

The above proposition provides a characterization of the dom-
inant diagonal property. The fact that the sector-optimal core
allocations are in the core does not depend on the selected optimal
matching means that the dominant diagonal property is indepen-
dent of the optimal matching placed on the main diagonal.

The following proposition shows that the dominant diagonal
property is necessary for the stability of the core.

Proposition 2. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment
gamewith |M1| = |M2| = |M3| = m, and an optimalmatching on the
main diagonal. If the core is a von Neumann–Morgenstern stable set,
then its corresponding valuation matrix A has a dominant diagonal.

Proof. Let us suppose, on the contrary, that the core of a three-
sided assignment game (N, wA) is a von Neumann–Morgenstern
stable set but its corresponding three-dimensional valuation ma-
trix A does not have a dominant diagonal. If A does not have a
dominant diagonal, then, by Proposition 1, there exists one sector-
optimal allocation, let us say (a, 0, 0), that does not belong to the
core. But then, since C(wA) is assumed to be a von Neumann–
Morgenstern stable set, there exists (u′, v′, w′) ∈ C(wA) such that

(u′, v′, w′) dom{i,j,k}(a, 0, 0).

Then, u′

i > ui = aiii which contradicts (u′, v′, w′) ∈ C(wA). □

Proposition 2 raises the question of the equivalence between
the von Neumann–Morgenstern stability of the core and the dom-
inant diagonal property of the matrix. That is, if A has a domi-
nant diagonal, is the core of the assignment game, C(wA), a von
Neumann–Morgenstern stable set? We can answer this question
in the affirmative when the market has only two agents in each
sector. The proof is consigned to the working paper (Atay and
Núñez, 2018).

Proposition 3. Given a 2 × 2 × 2 assignment game (N, wA) with
an optimal matching on the main diagonal, the core C(wA) is a von
Neumann–Morgenstern stable set if and only if A has a dominant
diagonal.

In the section that follows, we return to the general case, that is
to say,m × m × m assignment games, in search of a stable set.

4. The union of the cores of all µ-compatible subgames

We follow an approach similar to that employed in Núñez
and Rafels (2013) when constructing a stable set for two-sided
assignment markets. To this end, we first extend the notion of the
µ-compatible subgame to three-sided assignment games. Then,
we consider the union of the extended cores of all µ-compatible
subgames and we identify the stability properties of this set. We
show that it may not satisfy external stability, and hence, unlike
the two-sided case, it does not always result in a von Neumann–
Morgenstern stable set.

Definition 2. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment
game, with m = |M1| = |M2| = |M3|, µ ∈ MA(M1,M2,M3) an
optimal matching, and I ⊆ M1, J ⊆ M2 and K ⊆ M3. The subgame

(M1 \ I,M2 \ J,M3 \ K , wA−I∪J∪K )

is a µ-compatible subgame if and only if

wA(M1 ∪ M2 ∪ M3) = wA((M1 \ I) ∪ (M2 \ J) ∪ (M3 \ K ))

+

∑
(i,j,k)∈µ

i∈I

aijk +

∑
(i,j,k)∈µ

j∈J

aijk +

∑
(i,j,k)∈µ

k∈K

aijk.
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When a subgame is µ-compatible, each agent outside the sub-
game can leave the market taking with them the full profit of their
partnership in the optimalmatchingµ, andwhat remains is exactly
the worth of the submarket. As a consequence, any core element
of the subgame can be completed with the payoffs of the excluded
agents in order to obtain an imputation of the initial market. By
so doing, the (extended) cores of the µ-compatible subgames can
be seen as set-valued solutions for the original game, either to
complement the core with more possible allocations that may
result fromcooperation or to replace the corewhenever it is empty.

Without loss of generality, assume that the diagonalmatching is
an optimal matching for A: µ = {(i, i′, i′′)|i ∈ {1, 2, . . . ,m}}. Then,
given a µ-compatible subgame wA−I∪J∪K we define its extended
core,

Ĉ(wA−I∪J∪K ) =

{
(x, z) ∈ Bµ(wA)

⏐⏐⏐⏐ xi = aiii for all i ∈ I ∪ J ∪ K ,

z ∈ C(wA−I∪J∪K )

}
.

In particular, if we exclude all agents in M1, then the game
(N \M1, wA−M1

) is always aµ-compatible subgame sincewA−M1
(N \

M1) = 0. The core of this µ-compatible subgame is reduced
to {(0, 0)} ⊆ RM2 × RM3 and its extended core is Ĉ(wA−M1

) =

{(a, 0, 0)}. Analogous µ-compatible subgames are obtained when
we exclude the agents of one of the remaining sides of the market.

Given a three-sided assignment market γ = (M1,M2,M3; A),
we define the set of all coalitions that give rise to µ-compatible
subgames:

Cµ(A) = {R ⊆ M1 ∪ M2 ∪ M3 | wA−R is a µ-compatible subgame}.

Note that when R = ∅ we retrieve the core of the initial game
(N, wA).

Now, for any assignment market γ = (M1,M2,M3; A), we
define the set Vµ(wA) formed by the union of extended cores of
all µ-compatible subgames:

Vµ(wA) =

⋃
R∈Cµ(A)

Ĉ(wA−R ) (2)

An immediate consequence of the above definition is that
Vµ(wA) is a subset of the µ-principal section:

Vµ(wA) ⊆ Bµ(wA).

Note also that, unlike the core, the set Vµ(wA) is always non-empty
since it contains at least the three points (a, 0, 0), (0, a, 0), and
(0, 0, a), that result from the µ-compatible subgames in which all
the agents of one sector have been excluded. In fact, the following
example shows that Vµ(wA) can be reduced to just these three
points and, hence, it can be non-convex and disconnected.

Example 1. Consider a three-sided assignment game in which
each sector has two agents, M1 = {1, 2}, M2 = {1′, 2′

}, and
M3 = {1′′, 2′′

}, and the valuation matrix A is the following

1′ 2′

1
2

(
3 1
2 5

)
1′′

1′ 2′

1
2

(
1 4
5 4

)
2′′

.

Notice there is a unique optimal matching µ = {(1, 1′, 1′′), (2, 2′,
2′′)}. By Lucas’ conditions for balancedness, see (1), we can see that
the core is empty: a111 +2a222 = 11 < 14 = a221 +a122 +a212. We
observe that the onlyµ-compatible subgames arewA−{1,2} ,wA

−{1′,2′}
and wA

−{1′′,2′′}
. Hence Vµ(wA) = {(a, 0, 0), (0, a, 0), (0, 0, a)} =

{(3, 4; 0, 0; 0, 0), (0, 0; 3, 4; 0, 0), (0, 0; 0, 0; 3, 4)}. Now it is easy
to realize that such points do not dominate any imputation in the
µ-principal section. Thus, Vµ(wA) is not externally stable, which
implies it is not a von Neumann–Morgenstern stable set.3

3 Vµ may also not be a subsolution, as defined in Roth (1976). See Atay and
Núñez (2018) for a detailed discussion of this same example.

Although Vµ is not a stable set, this set does have some appeal-
ing stability properties in three-sided markets. Recall the notion
of the core of an abstract game in Lucas (1992), based on the
definition of a set of feasible outcomes and a dominance relation
in this set. Thus, our abstract core consists of the undominated
allocations in the µ-principal section Bµ(wA), rather than taking
all the undominated imputations as in the usual definition of the
core. Note that in the setting of three-sidedmarkets, itmakes sense
to assume that the feasible outcomes are those in a µ-principal
section, where utility is only transferred between those agents that
are matched each other.

To this end, we state a property of the set Vµ(wA) that allows
us to check whether an allocation belongs to this set without there
being any need to compute all the compatible subgames. We omit
the proof since it is quite straightforward.

Lemma 4. Let (M1∪M2∪M3, wA) be a three-sided assignment game
with |M1| = |M2| = |M3| = m, and an optimal matching µ on the
main diagonal. Let (u, v, w) be an allocation of the principal section,
that is, (u, v, w) ∈ Bµ(wA). Then (u, v, w) ∈ Vµ(wA) if and only if
for all (i, j, k) ∈ M1 × M2 × M3 at least one of the four following
statements holds:

(i) either ui = aiii
(ii) or vj = ajjj
(iii) or wk = akkk
(iv) or ui + vj + wk ≥ aijk.

The following proposition shows that when we consider the
outcomes in the µ-principal section as feasible, the set Vµ(wA) is
precisely the set of undominated outcomes.

Proposition 5. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment
game with |M1| = |M2| = |M3| = m, and µ ∈ MA(M1,M2,M3).
Then,

Vµ(wA) = U(Bµ(wA))

where U(Bµ(wA)) is the set of imputations that are undominated by
the µ-principal section.

Proof. Let us write V = Vµ(wA) and assume µ is on the main
diagonal. First, we prove U(Bµ(wA)) ⊆ Bµ(wA). Note that this
inclusion is equivalent to I(wA) \ Bµ(wA) ⊆ D(Bµ(wA)), where
D(Bµ(wA)) is the set of imputations that are dominated by some
allocation in the µ-principal section.

Take (x, y, z) ∈ I(wA)\Bµ(wA). Then, there exists i ∈ {1, . . . ,m}

such that xi + yi + zi < aiii. Take ε = aiii − xi − yi − zi > 0, and
define λ1, λ2 and λ3 by λ1 =

xi+
ε
3

aiii
, λ2 =

yi+
ε
3

aiii
and λ3 =

zi+
ε
3

aiii
. Note

that λ1 +λ2 +λ3 = 1, and λ1aiii = xi + ε
3 > xi, λ2aiii = yi + ε

3 > yi
and λ3aiii = zi + ε

3 > zi.
Now, recall that (a, 0, 0), (0, a, 0) and (0, 0, a) all belong to

Bµ(wA) and take the point (u, v, w) = λ1(a, 0, 0) + λ2(0, a, 0) +

λ3(0, 0, a) ∈ Bµ(wA). Then, for all i ∈ {1, . . . ,m}, ui + vi + wi =

(λ1 + λ2 + λ3)aiii = aiii. Together with ui > xi, vi > yi and
wi > zi, this implies that (u, v, w) dom {i,i′,i′′}(x, y, z) and hence
(x, y, z) ∈ D(Bµ(wA)).

Now we prove V = U(Bµ(wA)). First, we show V ⊆ U(Bµ(wA)),
that is, no allocation in V is dominated by an allocation in the µ-
principal section. Consider two allocations (u, v, w) ∈ Bµ(wA) and
(u′, v′, w′) ∈ V . Assume that for some (i, j, k) ∈ M1 × M2 × M3,
(u, v, w) dom{i,j,k} (u′, v′, w′) holds, whichmeans ui+vj+wk ≤ aijk
together with ui > u′

i , vj > v′

j and wk > w′

k.
Note that (u′, v′, w′) ̸∈ C(wA), since core elements are undomi-

nated. Hence, (u′, v′, w′) ∈ Ĉ(wA−R ) for some R ∈ Cµ(A).
If i ∈ R, then u′

i = aiii. Then ui > u′

i = aiii which contradicts
(u, v, w) ∈ Bµ(wA). The same argument leads to a contradiction
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if j ∈ R or k ∈ R. If i /∈ R, j /∈ R and k /∈ R, then by Lemma 4,
u′

i + v′

j + w′

k ≥ aijk ≥ ui + vj + wk which contradicts our
assumption ui > u′

i , vj > v′

j and wk > w′

k. This finishes the proof
of (u, v, w) ∈ U(Bµ(wA)).

Now, we move to U(Bµ(wA)) ⊆ V . Assume on the contrary
that (u, v, w) ∈ U(Bµ(wA)) and (u, v, w) /∈ V . Since U(Bµ(wA)) ⊆

Bµ(wA), (u, v, w) ∈ Bµ(wA). Then, (u, v, w) ∈ Bµ(wA) and (u, v, w)
/∈ V which implies by Lemma 4 there exists (i, j, k) ∈ M1×M2×M3
such that ui < aiii, vj < ajjj, wk < akkk and ui + vj + wk < aijk.
Define ε1 = aiii −ui > 0, ε2 = ajjj −vj > 0, ε3 = akkk −wk > 0 and
ε4 = aijk−ui−vj−wk > 0. Also, let us define u′

i = ui+min{ε1,
ε4
3 },

v′

j = vj+min{ε2,
ε4
3 } andw′

k = wk+min{ε3,
ε4
3 }. Note thatu′

1 > u1,
v′

j > vj, w′

k > wk and u′

i + v′

j + w′

k < ui + vj + wk + 3 ε4
3 = aijk.

Now, we can complete the definition of (u′, v,′ w′) as follows:
Since, by definition, u′

i ≤ aiii, define v′

i = aiii − u′

i and w′

i = 0.
Similarly, since v′

j ≤ ajjj, define u′

j = ajjj − v′

j and w′

i = 0. And
finally, since w′

k ≤ akkk, define v′

k = akkk − w′

k and u′

k = 0. For
all l ∈ {1, . . . ,m} \ {i, j, k} define u′

l = alll, v′

l = 0 and w′

l = 0.
Then (u′, v′, w′) ∈ Bµ(wA) and (u′, v′, w′) dom {i,j,k}(u, v, w) which
contradicts (u, v, w) ∈ U(Bµ(wA)). □

The above proposition shows that for a given optimal matching
µ, Vµ(wA) is the ‘‘core’’, if we take as our set of feasible payoff vec-
tors theµ-principal section Bµ(wA). We have shown that Vµ(wA) is
always non-empty and, moreover, it can be easily proved that the
set Vµ(wA) coincides with the usual core C(wA) if and only if the
valuation matrix A has a dominant diagonal.

In Proposition 5 we also show that there is no allocation in the
µ-principal section that dominates any element of Vµ(wA). This
ensures the internal stability of Vµ(wA). As a result, if for some
given optimal matching µ there exists a stable set included in the
µ-principal section, then Vµ(wA) would be included in this stable
set.
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