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a b s t r a c t

Since stable matchings may not exist, we propose a weaker notion of stability based on the credibility
of blocking pairs. We adopt the weak stability notion of Klijn and Massó (2003) for the marriage
problem and we extend it to the roommate problem. We first show that although stable matchings may
not exist, a weakly stable matching always exists in a roommate problem. Then, we adopt a solution
concept based on the credibility of the deviations for the roommate problem: the bargaining set. We
show that weak stability is not sufficient for a matching to be in the bargaining set. We generalize
the coincidence result for marriage problems of Klijn and Massó (2003) between the bargaining set
and the set of weakly stable and weakly efficient matchings to roommate problems. Finally, we prove
that the bargaining set for roommate problems is always non-empty by making use of the coincidence
result.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gale and Shapley (1962) introduce a two-sided matching
odel to answer questions such as who marries whom, who
ets which school seat, who shares a dormitory with whom. In
heir seminal paper, they first introduce the marriage problem, in
hich there are two disjoint sets of agents, say men and women,
nd each agent has preferences over agents on the other side of
he problem with the possibility of remaining single. No agent
an be matched with an agent from the same side. Following
he marriage problem, they investigate a generalization, the so-
alled roommate problem. In the roommate problem, there exists
set of agents each endowed with preferences over all agents.
ach agent is interested in forming at most one partnership.1 A
atching is said to be stable2 if there is no agent who prefers
eing unmatched to her prescribed partner and no pair of agents
refer being matched to each other to their current partners. They
how that stable matchings always exist for the marriage prob-
em, whereas their existence is not guaranteed for the roommate

∗ Corresponding author.
E-mail addresses: aatay@cee.uned.es (A. Atay), ana.mauleon@usaintlouis.be

A. Mauleon), vincent.vannetelbosch@uclouvain.be (V. Vannetelbosch).
1 The roommate problem is a model with important applications or exten-

ions including coalition formation (Bogomolnaia and Jackson, 2002), network
ormation (Jackson and Watts, 2002), kidney exchange problem (Roth et al.,
005) among others. Roth and Sotomayor (1990) and Manlove (2013) provide
comprehensive survey on matching theory.
2 For one-to-one matching models, this stability notion is equivalent to core

tability. A matching is in the core if there is no subset of agents who, by forming
nly partnerships among themselves, can all obtain a strictly preferred outcome.
ttps://doi.org/10.1016/j.jmateco.2020.102465
304-4068/© 2020 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
problem. This is a reason why the literature often restricts the
analysis to solvable roommate problems (i.e. roommate prob-
lems with stable matchings) and on conditions to guarantee the
existence of stable matchings (see e.g. Tan, 1991; Chung, 2000;
Diamantoudi et al., 2004; Klaus and Klijn, 2010).

In this paper, instead of restricting the analysis to solvable
roommate problems, we adopt a weaker notion of stability based
on the credibility of blocking pairs for solving the roommate
problem: weak stability. An individually rational matching is
weakly stable if all blocking pairs are weak. A blocking pair is said
to be a weak blocking pair if for every blocking pair one of the
partners can find a more attractive partner with whom he forms
another blocking pair for the original matching. The motivation
behind the notion of weakly stable matchings is that the existence
of a blocking pair, which undermines the stability of a matching,
is not always credible in the sense that one of the partners
may form another blocking pair for the original matching with
a more preferred partner. In other words, an individually rational
matching is weakly stable if every blocking pair is not credible
in the sense above. In the marriage problem, the existence of
weakly stable matchings is guaranteed, since by definition, all
stable matchings satisfy weak stability.3 However, for the room-
mate problem, the existence of a weakly stable matching does
not follow from the existence of a stable matching since such
matching may fail to exist.

Our main results follow. First, we guarantee the existence of
weakly stable matchings by constructing such a matching even

3 See Klijn and Massó (2003).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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or unsolvable roommate problems. Moreover, when the core is
on-empty, in general, it is a strict subset of the set of weakly
table matchings. Second, we adopt a solution concept based on
he credibility of deviations: the bargaining set. Klijn and Massó
2003) adapt a variation of the bargaining set introduced by Zhou
1994) to the marriage problem. They show that the bargaining
et coincides with the set of weakly stable and weakly efficient
atchings.4 We show that weak stability is not sufficient for a
atching to be in the bargaining set of a roommate problem.
hird, we prove that the bargaining set is always non-empty.
o prove the non-emptiness of the bargaining set, we generalize
he coincidence result for marriage problems of Klijn and Massó
2003) between the bargaining set and the set of weakly stable
nd weakly efficient matchings to the roommate problem.
Our results are robust with respect to the enforceability notion

atisfying coalitional sovereignty. The standard enforceability no-
ion used to define the bargaining set violates the assumption of
oalitional sovereignty, the property that an objecting coalition
annot enforce the organization of agents outside the coalition.
oalitional sovereignty requires that nothing changes for the
naffected agents after the deviation of a coalition. Unaffected
gents are those agents who are not part of the deviating coalition
nd were not together with any agent of the deviating coalition
n the original matching. For roommate problems, if a coalition
eviates, then it is free to form any match between its mem-
ers; it cannot affect existing matches between agents outside
he coalition, and previous matches between coalition and non-
oalition members are destroyed.5 However, our results are not
ffected if we replace the classical enforceability condition by the
nforceability condition that does satisfy coalitional sovereignty.
Other concepts based on a relaxation of the stability notion

ave been proposed for roommate problems. These include al-
ost stable matchings (Abraham et al., 2006), P-stable matchings

Iñarra et al., 2008), absorbing sets (Iñarra et al., 2013), Q-stable
atchings (Biró et al., 2016), and SaRD matchings (Hirata et al.,
020).
Iñarra et al. (2008) introduce the notion of P-stable matchings

ased on the stable partitions due to Tan (1991). For solvable
oommate problems, the set of stable matchings coincide with
he set of P-stable matchings. However, one can verify that none
f the P-stable matchings in Example 1 of Iñarra et al. (2008)
elongs to the bargaining set of the given problem. Moreover,
here exists a matching in the bargaining set which is not a P-
table matching. Hence, the set of P-stable matchings and the
argaining set are different.
Iñarra et al. (2013) propose the notion of absorbing sets for

he roommate problem. In the context of the roommate problem,
subset of matchings is an absorbing set if every matching in
n absorbing set is dominated by any other matching in the
ame set and no matching outside the set can directly dominate
ny matching in the absorbing set. The bargaining set for the
oommate problem is a unique set-wise solution concept whereas
here may exist more than one absorbing set for a given room-
ate problem. For solvable problems, Iñarra et al. (2013) show

hat a set of matchings is an absorbing set if and only if it is

4 A matching is weakly efficient if there does not exist another matching in
hich all agents are better off.
5 Several papers have used notions of enforceability that respect coalitional

overeignty, see Diamantoudi and Xue (2003) for hedonic games, Mauleon et al.
2011) for one-to-one matching problems with farsighted agents, Klaus et al.
2011) for roommate markets with farsighted agents, Echenique and Oviedo
2006) and Konishi and Ünver (2006) for many-to-many matching problems,
auleon et al. (2014) for one-to-one matching problems and for roommate
arkets, Herings et al. (2017) for one-to-one matching problems with myopic
gents, Herings et al. (2020) for one-to-one matching problems with myopic and
arsighted agents, and Ray and Vohra (2015) for non-transferable utility games.
2

a singleton set containing a stable matching. Hence, the union
of all absorbing sets in a solvable roommate problem coincides
with the core. On the other hand, for the marriage problem, Klijn
and Massó (2003) observed that the bargaining set can be a strict
superset of the core. Since it is a special case of the roommate
problem, this result carries over to the roommate problem. Thus,
these two notions are different.

Biró et al. (2016) propose a core consistent solution for room-
mate problems. A Q-stable matching has the largest set of pairs
hat are stable within themselves among all matchings and it has
he largest number of pairs such that once the pairs are formed
hey never split. In Example 5 of Biró et al. (2016), one can verify
hat not all Q-stable matchings are in the bargaining set whereas
matching in the bargaining set needs not to be a Q-stable
atching. Hence, we see that the set of Q-stable matchings and

he bargaining set considered in this paper are different.
Recently, Hirata et al. (2020) introduce a solution concept, the

table against robust deviations (SaRD) matchings for roommate
roblems. The SaRD matchings is the closest notion to the bar-
aining set. It is also based on credibility of blocking pairs. A
eviation from a matching µ is robust up to depth k, if any of
he deviating agents will never end worse-off than at µ after any
equence of at most k subsequent deviations occurs. A matching
s SaRD up to depth k, if there is no robust deviation up to depth
. They provide examples to show that the bargaining set and the
et of SaRD matchings are different.
The rest of the paper is organized as follows. In Section 2 we

ntroduce the roommate problem and the notion of stability. In
ection 3 we extend the notion of weak stability to the roommate
roblem and we study its structure. In Section 4 we introduce the
argaining set of Zhou (1994), we investigate its relationship with
he set of weakly stable matchings and we prove that is always
on-empty. In Section 5 we conclude.

. Roommate problems

A roommate problem (N, ≻) consists of a finite set of agents
and a preference profile ≻= (≻l)l∈N . Each player l ∈ N

as a complete and transitive preference ordering ≻l over N .
hroughout the paper, we assume that the preferences are strict.
e write that j ≻i k if agent i strictly prefers j to k. Since we will

onsider situations where j = k, we write j ⪰i kwhen i prefers j at
east as well as k. We denote the kth ranked agent in a preference
rofile of an agent i by rk(i). An agent j is acceptable to another
gent i if j ≻i i. A pair of agents i, j ∈ N are mutually acceptable if
≻i i and i ≻j j. A pair of agents i, j ∈ N are mutually best if i and j
re their respective top choices among their acceptable partners,
1(i) = j and r1(j) = i.

A matching is a one-to-one function µ : N → N such that
f µ(i) = j, then µ(j) = i. If µ(i) = j, then agents i and j are
atched to one another. µ(i) = i means that agent i is single or
nmatched. Given a roommate problem (N, ≻), we denote the set
f all possible matchings byM(N, ≻). A matching µ is individually
ational if no agent is matched with an unacceptable partner, that
s, µ(i) ⪰i i for all i ∈ N . For a given matching µ, a pair of agents
(i, j) forms a blocking pair if they prefer being matched to each
ther than to their current partners under matching µ, that is,
≻i µ(i) and i ≻j µ(j). For a given matching µ ∈ M(N, ≻), we
enote the set of all blocking pairs by BP(µ). A matching µ is
table if it is individually rational and there are no blocking pairs.
ale and Shapley (1962) show that stable matchings may not
xist in the roommate problem. A roommate problem is called
olvable if the set of stable matchings is non-empty, and is called
nsolvable otherwise. It is well-known that, in the roommate
roblem, whenever there exist stable matchings, it coincides with
he core, in which no subset of agents have incentives to be
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3
atched among themselves, possibly by dissolving their current
artnerships to obtain a strictly better partner.6

efinition 1. Given a roommate problem (N, ≻), a ring A =

a1, . . . , ak) ⊆ N is an ordered subset of agents, k ≥ 3, such that
subscript modulo k)

i+1 ≻ai ai−1 ≻ai ai for all i ∈ {1, . . . , k}.

ring A is an odd ring if the number of agents in the ring, |A|, is
dd.

Tan (1991) provided a necessary and sufficient condition for
roommate problem with strict preferences to be solvable. He
akes use of the notion of stable partition to establish a necessary
nd sufficient condition for a roommate problem to be solvable.

efinition 2. Given a roommate problem (N, ≻), a partition P of
is stable if

1. for all S ∈ P , the set S is a ring, a pair of mutually
acceptable agents or a singleton, and

2. for all S1, S2 ∈ P where S1 = {a1, . . . , ak} and S2 =

{b1, . . . , bl} with possibility of S1 = S2, if bj ≻ai ai−1, then
bj−1 ≻bj ai, for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l} such that
bj ̸= ai+1.

Condition 1 characterizes the sets of a stable partition and
ondition 2 generalizes the notion of stability from matchings
o partitions. The stability of a partition is studied by applying
ondition 2 among agents from different elements S1 and S2 in
he partition P and among agents within the same element S in
he partition P .7

Tan (1991) proved that for a given unsolvable roommate prob-
em, there always exist stable partitions. Moreover, the following
ecessary and sufficient condition related to unsolvable room-
ate problems is established.

emark 1 (Tan, 1991). (i) A roommate problem (N, ≻) has no
table matchings if and only if there exists a stable partition with
n odd ring. (ii) All stable partitions of a roommate problem have
xactly the same odd rings and singletons. (iii) All even rings of
stable partition can be broken into pairs of mutually acceptable
gents while preserving stability.

The generalization of stability to partitions is an important tool
o study roommate problems. Firstly, the literature focusing on
roposing stability concepts for unsolvable roommate problems
akes use of stable partitions. Secondly, if a stable partition has
o odd ring, then we obtain a stable matching. Otherwise, there
oes not exist any stable matching and we know the reason
ehind the non-existence. Finally, whenever an agent from each
dd ring is left unmatched, we can obtain a matching at which
xcluded agents from odd rings are single and remaining agents
atisfy stability among themselves.
A matching is said to be weakly efficient if there is no other

atching at which all agents are strictly better off.

efinition 3. Given a roommate problem (N, ≻), a matching µ ∈

(N, ≻) is weakly efficient if there is no matching µ′
∈ M(N, ≻)

uch that all agents are strictly better off, i.e., µ′(i) ≻i µ(i) for all
∈ N .

Since stable roommate matchings might not exist, we study
he existence of weakly stable matchings in the next section.

6 When no confusion arises, we simply denote any coalition by its agents,
.g. ij instead of {i, j} = S ⊆ N .
7 For a singleton agent in partition P , {ai} = S1 ∈ P , aj ≻ai ai implies aj ≻aj ai
henever S = {a } ∈ P , and a ≻ a implies a ≻ a whenever a ∈ S ∈ P .
2 j j ai i j−1 aj i j 2

3

. Weakly stable matchings

Klijn and Massó (2003) introduce the notion of weak stability
for the marriage problem. We adapt it to the roommate problem.
A blocking pair is said to be a weak blocking pair if a partner of
the blocking pair can form another blocking pair for the original
matching with a more preferred partner.

Definition 4. Given a roommate problem (N, ≻), a blocking pair
(i, j) for a matching µ is a weak blocking pair if there exists
another agent k ∈ N such that k ≻i j and i ≻k µ(k) or k ≻j i
and j ≻k µ(k).

Definition 5. Given a roommate problem (N, ≻), a matching µ
is weakly stable if it is individually rational and all blocking pairs
are weak.

An individually rational matching is weakly stable if every
blocking pair is not credible in the sense that one of the partners
can find a more attractive partner with whom he forms another
blocking pair for the original matching. Since a stable matching
is weakly stable by definition, the existence of weakly stable
matchings is guaranteed for the marriage problem but not for
the roommate problem. Pittel and Irving (1994) remark that the
probability of having an unsolvable roommate problem sharply
increases as the number of agents increases. Hence, the existence
of weakly stable matchings becomes an important issue.

Notice that a pair of agents that are not mutually acceptable
cannot block a weakly stable matching since individual rationality
is a necessary condition in order for a matching to be weakly
stable. Moreover, under a matching that is not individually ra-
tional, all agents cannot be strictly better off compared to any
individual rational matching. Hence, for expositional simplicity,
throughout the paper we consider the preferences restricted to
mutually acceptable pairs; i.e., any agent i ∈ N has a preference
ordering ≻i over agents j ∈ N such that j ≻i i and i ≻j j. Let (i, j)
be a weak blocking pair for µ. We write (i, j) → (i′, j) if i′ ∈ N ,
i′ ≻j i and (i′, j) is a blocking pair for µ.

Next, we construct a weakly stable matching for unsolvable
roommate problems. It guarantees the existence of weakly stable
matchings for the roommate problem given that every stable
matching is also weakly stable for solvable problems.

Theorem 1. Given a roommate problem (N, ≻), there always exists
a weakly stable matching.

Proof. Since any stable matching is a weakly stable matching,
the result straightforwardly follows when the problem is solvable.
Hence, it is sufficient to show that there exists a weakly stable
matching for unsolvable roommate problems. To do so, we intro-
duce a procedure which returns a weakly stable matching for any
given roommate problem.

PROCEDURE: WSMATCH

Phase 0: Let (N0, ≻
0) be a roommate problem where N0 = N

and ≻
0
:=≻. Take the matching at which all agents are single:

µ0(i) = i for all i ∈ N0.

Phase 1 ≤ t ≤ N/2:

Step 1: Fix all mutually best pairs for (Nt−1, ≻
t−1):

MBt−1(Nt−1, ≻
t−1) := {(i, j) ∈ Nt−1 × Nt−1 | i and j

are mutually best according to ≻
t−1 }.

Define the set F t−1 that consists of agents forming fixed mutually
best pairs,

F t−1
:= {i ∈ N | ∃j ∈ N such that (i, j) ∈ MB(N , ≻t−1)}.
t−1 t−1 t−1
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f there is no mutually best pair, MB(Nt−1, ≻
t−1) = ∅, go to Phase

End. Otherwise go to Step 2.

Step 2: Delete all fixed agents i ∈ F t−1 from the preferences of
their all other acceptable partners j ∈ Nt−1 such that i ≻

t−1
j j.

tep 3: Define a reduced problem (St , ≻t ) with remaining agents
t = Nt−1 \ F t−1 and rescaled preferences ≻

t
l := ≻

t−1
l |St

for all
∈ St .

tep 4: St = Nt and go to Phase t + 1.

hase End: Return the matching that consists of all fixed pairs
together with remaining agents staying single:

µ(i) =j for all i ∈ (i, j) ∈

N/2⋃
t=0

MBt (Nt , ≻
t ),

µ(i) =i for all i ∈ N \

N/2⋃
t=0

F t .

First, notice that for a given problem (N, ≻) the maximum
number of mutually best pairs is N/2, since agents have strict
preferences. Let us distinguish two cases to show that Procedure
WSMATCH returns a weakly stable matching:

Case 1: There is no mutually best pair.
Since there is no mutually best pair, Procedure WSMATCH

returns the matching at which all agents are single. Notice that
all acceptable pairs form a blocking pair against the matching
at which all agents are single. Since there is no mutually best
pair, all blocking pairs are weak. Hence, the matching returned
by Procedure WSMATCH is weakly stable.

Case 2: There exist mutually best pairs.
We have to show that Procedure WSMATCH returns a weakly

stable matching.
Fixing all mutually best pairs at Step 1 of Phase 1 ≤ t ≤ N/2,

we guarantee all mutually best pairs are part of the matching
obtained by Procedure WSMATCH. If a mutually best pair is part
of a matching, no blocking pair can be formed by any partner of
the mutually best pair. Hence, by deleting mutually best partners
from their all other acceptable partners’ preference list at Step
2 and rearranging preferences of remaining agents at Step 3, we
restrict the possible blocking pairs in the reduced problem to be
formed among the remaining agents.

The procedure returns a stable matching whenever all agents
are fixed as a partner of a mutually best pair during the proce-
dure. A stable matching is, by definition, a weakly stable match-
ing. In the second case, after deleting mutually best partners
from the preference list of their other acceptable partners, it
remains a subset of agents without mutually best pairs. Then, the
formation of blocking pairs is restricted to the subset of agents
with no mutually best pairs. Since fixed mutually best pairs
have been deleted recursively during the Procedure, all blocking
pairs formed by the remaining subset of agents are weak. Thus,
WSMATCH returns a weakly stable matching.

By means of Procedure WSMATCH, the existence of weakly
stable matchings for roommate problems is guaranteed. □

Theorem 1 guarantees the existence of a weakly stable match-
ing even when there is no stable matching. The next examples
pinpoint the importance of weakly stable matchings for room-
mate problems. We provide two examples to show how Pro-
cedure WSMATCH runs and returns a weakly stable matching.
In the next example, although the core is empty, there exists
a unique weakly stable matching. This matching is returned by
Procedure WSMATCH.
4

Example 1. Consider a roommate problem (N, ≻) where N =

{1, 2, 3, 4, 5, 6, 7, 8} and the preferences of agents are as follows:

1 : 2 3 1
2 : 3 1 2
3 : 1 2 3
4 : 7 5 8 4
5 : 6 4 5
6 : 7 5 6
7 : 4 8 6 7
8 : 4 7 8.

Notice that P = {123, 47, 56, 8} is the unique stable partition and
this problem is unsolvable. At Phase 0 we start with the matching
at which each agent is single: µ0 = {1, 2, 3, 4, 5, 6, 7, 8}. At
Step 1 of Phase 1, the pair (4, 7) is fixed since it is the only
mutually best pair. Then, at Step 2 we delete agent 4 and agent
7 from their all acceptable partners’ preferences. At Step 3, we
consider the reduced problem consisting of agents that are still
not fixed, S1 = {1, 2, 3, 5, 6, 8} and update their preferences
following eliminations at Step 2:

1 : 2 3 1
2 : 3 1 2
3 : 1 2 3
5 : 6 5
6 : 5 6
8 : 8.

We go to Phase 2 and iterate Step 1–3 for this reduced problem.
We fix the pair (5, 6) since they form a mutually best pair. Then,
at Step 3 we have the reduced problem with the set of players
S2 = {1, 2, 3, 8} and the preferences of agents are as follows:

1 : 2 3 1
2 : 3 1 2
3 : 1 2 3
8 : 8.

At Step 1 of Phase 3, since there is no mutually best pair, the
Procedure goes to Phase End. It returns the matching formed
by the fixed pairs together with remaining agents unmatched:
µ = {47, 56, 1, 2, 3, 8}. One can easily verify that the con-
structed matching µ is indeed weakly stable. At the matching
µ = {47, 56, 1, 2, 3, 8} there are three blocking pairs, BP(µ) =

{12, 13, 23}. All of them are weak: (1, 2) → (2, 3) → (1, 3) →

(1, 2).

In Example 1 there is only one weakly stable matching. Never-
theless, given an unsolvable roommate problem, there may exist
more than one weakly stable matchings. In Example 2, Procedure
WSMATCH returns only one of the weakly stable matchings.

Example 2. Consider a roommate problem (N, ≻) where N =

{1, 2, 3, 4} and the preferences of agents are as follows:

1 : 2 3 4 1
2 : 3 1 4 2
3 : 1 2 4 3
4 : 1 2 3 4.

Notice first that this is an unsolvable roommate problem at which
P = {123, 4} is the unique stable partition. The procedure WS-
MATCH starts with the matching at which all agents are single.
There is no mutually best pair and hence the Procedure returns



A. Atay, A. Mauleon and V. Vannetelbosch Journal of Mathematical Economics 94 (2021) 102465

t
a

W

w
W
A
B
(
b
(
m
{

(

t
c
a
t

C
m
M
s

4

v
i
e
b
B
p
o
S
f
µ
a
p

D
w
µ

D
p
a
µ

o
r
b
c
l
t
t
o

c

he matching at which all agents are single: µ = {1, 2, 3, 4}. Since
t matching µ all agents are single, all acceptable pair of agents

are blocking pairs: BP(µ) = {12, 13, 14, 23, 24, 34}. Since there
is no mutually best pair, a partner of any given blocking pair can
find a better blocking partner. Thus, all blocking pairs are weak.
Hence, the matching µ = {1, 2, 3, 4} obtained by Procedure

SMATCH is weakly stable.
Although there is no stable matching, there are three other

eakly stable matchings than the one returned by Procedure
SMATCH: µ2 = {14, 2, 3}, µ3 = {24, 1, 3}, and µ4 = {1, 2, 34}.
t the matching µ2 = {14, 2, 3} there are three blocking pairs,
P(µ2) = {12, 13, 23}. All of them are weak: (1, 2) → (2, 3) →

1, 3) → (1, 2). At the matching µ3 = {24, 1, 3} there are four
locking pairs, BP(µ3) = {12, 13, 14, 23}. All of them are weak:
1, 4) → (1, 2) → (2, 3) → (1, 3) → (1, 2). Finally, at the
atching µ4 = {1, 2, 34} there are five blocking pairs, BP(µ4) =

12, 13, 23, 14, 24}. All of them are weak: (2, 4) → (1, 4) →

1, 2) → (2, 3) → (1, 3) → (1, 2).

For the marriage problem, Klijn and Massó (2003) show that
he set of weakly stable matchings can be strictly larger than the
ore (the set of stable matchings). Since the marriage problem is
special case of the roommate problem, their result carries over
o the roommate problem.

orollary 1. In the roommate problem, unlike the set of stable
atchings, the set of weakly stable matchings is always non-empty.
oreover, the set of stable matchings is a (strict) subset of the weakly
table matchings.

. Zhou’s bargaining set

In this section, following Klijn and Massó (2003), we study a
ariation of the bargaining set introduced by Zhou (1994).8 The
dea behind the bargaining set is that a matching can be consid-
red plausible (even if it is not in the core) if all objections raised
y some agents can be nullified by another subset of agents.
efore we define Zhou’s (1994) bargaining set for roommate
roblems, we need to introduce the concepts of enforcement,
bjection, and counterobjection. Given a matching µ, a coalition
⊆ N is said to be able to enforce a matching µ′ over µ if the

ollowing conditions hold: for all i ∈ S, if µ′(i) ̸= µ(i), then
′(i) ∈ S. That is, a coalition S can enforce µ′ over µ if for each
gent in S who has a different partner at µ′ than at µ, her new
artner at µ′ belongs to S too.

efinition 6. An objection against a matching µ is a pair (S, µ′)
here ∅ ̸= S ⊆ N and µ′ is a matching that can be enforced over
by S such that µ′(i) ≻i µ(i) for all i ∈ S.

efinition 7. A counterobjection against an objection (S, µ′) is a
air (T , µ′′) where T ⊆ N with T \ S ̸= ∅, T ∩ S ̸= ∅, S \ T ̸= ∅,
nd µ′′ is a matching that can be enforced over µ by T such that
′′(i) ⪰i µ(i) for all i ∈ T \ S and µ′′(i) ⪰i µ′(i) for all i ∈ T ∩ S.

An objection is justified if there does not exist any counter-
bjection against it. The counterobjection should satisfy some
equirements. There must be at least one agent participating
oth in the objection and the counterobjection. Otherwise, the
ounterobjection can be seen as an objection since S ∩ T = ∅. At
east one agent involved in the objection should not take part in
he coalition T to form a counterobjection. Otherwise, S ⊆ T and
he counterobjection can be understood as a reinforcement to the
bjection. At least one agent in the counterobjection should not

8 Aumann and Maschler (1964) were first to define the bargaining set for
ooperative games.
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be part of the objection. Otherwise, T ⊆ S and the counterob-
jection can be considered as a refinement to the objection. With
the concepts of objection and counterobjection, we adapt Zhou’s
(1994) notion of bargaining set to the roommate problem.

Definition 8. Given a roommate problem (N, ≻), the bargaining
set is the set of matchings that have no justified objections:

Z(N, ≻) = {µ ∈ M(N, ≻) | for every objection at µ

there is a counterobjection}.

Given a roommate problem (N, ≻), let Z(N, ≻), WS(N, ≻),
and WE(N, ≻) be the bargaining set, the set of weakly stable
matchings, and the set of weakly efficient matchings, respectively.
When no confusion arises, we write Z = Z(N, ≻), WS =

WS(N, ≻), and WE = WE(N, ≻).
Obviously, if a stable matching exists, then it is in the bargain-

ing set. In contrast to the marriage problem, the non-emptiness of
the bargaining set is not guaranteed since a roommate problem
needs not have any stable matching. Although, we have shown
that there always exists a weakly stable matching, it is not suffi-
cient for a matching to be in the bargaining set. The reason behind
is that a weakly stable matching needs not satisfy weak efficiency.
If a weakly stable matching is not weakly efficient, an objection
of the set of agents N cannot be counterobjected. Hence, it is not
included in the bargaining set. Next example shows that, for a
given roommate problem (N, ≻), there may exist a weakly stable
matching that is not weakly efficient.

Example 3. Consider a roommate problem (N, ≻) where N =

{1, 2, 3, 4} and the preferences of agents are as follows:

1 : 2 3 4 1
2 : 3 1 4 2
3 : 1 2 4 3
4 : 1 2 3 4.

Note that the only stable partition is P = {123, 4} and there is
no stable matching. There are four weakly stable matchings: µ1 =

{14, 2, 3}, µ2 = {1, 2, 3, 4}, µ3 = {24, 1, 3}, and µ4 = {1, 2, 34}.
Although µ1, µ2, µ3, µ4 are weakly stable, only µ1 is weakly
efficient. Since agent 4 is matched with her top choice under
matching µ1, µ1(4) = 1, there is no matching in which all agents
can be better off than at µ1, and hence µ1 is weakly efficient.
Now, consider another matching µ′

= {14, 23}. All agents are
strictly better off at µ′ than at µ2 = {1, 2, 3, 4}: 4 ≻1 1, 3 ≻2 2,
2 ≻3 3, and 1 ≻4 4. All agents are strictly better off at µ′ than at
µ3 = {24, 1, 3}: 4 ≻1 1, 3 ≻2 4, 2 ≻3 3, and 1 ≻4 2. All agents are
strictly better off at µ′ than at µ4 = {1, 2, 34}: 4 ≻1 1, 3 ≻2 2,
2 ≻3 4, and 1 ≻4 3. Hence, µ2, µ3 and µ4 are weakly stable but
not weakly efficient.

Example 3 shows that weak stability is not sufficient for a
matching to be in the bargaining set. The matchings µ2, µ3, µ4
are weakly stable but all agents are better off at the matching µ′.
That is to say, S = N with the matching µ′ constitutes a justified
objection against the matchings µ2, µ3, µ4. Hence, neither µ2 nor
µ3 nor µ4 are in the bargaining set.

Nevertheless, given a roommate problem (N, ≻), we can con-
struct a matching that lies in the bargaining set. Hence, for any
given roommate problem (N, ≻), the bargaining set is always
non-empty. To do so, we generalize the characterization of the
bargaining set by Klijn and Massó (2003). They show that the set
of weakly stable and weakly efficient matchings coincides with
the bargaining set for the marriage problem. Next theorem shows
that, in the roommate problem, the bargaining set also coincides
with the set of weakly stable and weakly efficient matchings.



A. Atay, A. Mauleon and V. Vannetelbosch Journal of Mathematical Economics 94 (2021) 102465

T
s
m

p
e
c

c
T
t

T
Z

P
s
a
p
s
t
e
f
i
t
c

C
e

P
p
s
r

C
n

C

Fig. 1. Relation between WE , WS, and Z in Example 3.

heorem 2. Given a roommate problem (N, ≻), the bargaining
et coincides with the set of weakly stable and weakly efficient
atchings.

Since it is a straightforward generalization, we omit the formal
roof.9 Fig. 1 depicts the relation among weak stability, weak
fficiency, and the bargaining set by means of the matchings
onsidered in Example 3.
In our main result, for a given roommate problem, we will

onstruct a matching that is weakly stable and weakly efficient.
ogether with Theorem 2, it will guarantee the non-emptiness of
he bargaining set.

heorem 3. Given a roommate problem (N, ≻), the bargaining set
(N, ≻) is non-empty.

roof. First, notice that, if the problem is solvable, the result
traightforwardly follows from the fact that stable matchings
lways exist and they are in the bargaining set. For unsolvable
roblems, we will construct a matching that lies in the bargaining
et. To do so, we will show that for a given roommate problem,
here always exists a matching that is weakly stable and weakly
fficient. Together with the characterization of the bargaining set
or roommate problems (Theorem 2), the existence of match-
ngs that are both weakly stable and weakly efficient guarantees
he non-emptiness of the bargaining set. We distinguish several
ases.

ase 1: Given an unsolvable roommate problem (N, ≻), there
xist mutually best pairs.
From Theorem 1, we know that the matching returned by the

rocedure WSMATCH is weakly stable. Moreover, mutually best
airs are matched among themselves and hence they cannot be
trictly better off under any other matching. Thus, the matching
eturned by the Procedure WSMATCH is also weakly efficient.

ase 2: Given an unsolvable roommate problem (N, ≻), there is
o mutually best pair.

ase 2.1: There is an odd number of agents at the problem (N, ≻).
Since there is no mutually best pairs, WSMATCH returns the

matching at which all agents are unmatched, µ(i) = i for all i ∈

N , which is weakly stable. Moreover, it is also weakly efficient,
since an odd number of agents cannot be strictly better off si-
multaneously by forming partnerships.

Case 2.2: There is an even number of agents at the problem
(N, ≻).

Note first that all agents would be strictly better off under
any individually rational perfect matching, whenever it exists,
than the matching returned by WSMATCH at which all agents are
unmatched. Then, the matching returned by WSMATCH would

9 See Atay et al. (2019) for the formal proof.
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not satisfy weak efficiency. From Remark 1 we know that there
is a stable partition with odd rings for a given unsolvable room-
mate problem. We will construct a matching that is both weakly
efficient and weakly stable.

Notice first that since the total number of agents is even, at a
given stable partition of P for (N, ≻), if there is an odd number of
odd rings, there may be some pairs of mutually acceptable agents
and there must be an odd number of singletons. We will consider
possible stable partitions P for (N, ≻). Given a stable partition P
for (N, ≻), we define NA, NP , and NS to be, respectively, the set of
ring agents, the set of pair agents, and the set of singleton agents.
That is, NA = {ai ∈ N : ai ∈ A ∈ P}, NP = {aj ∈ N : {aj, aj−1} ∈ P},
and NS = {ak ∈ N : {ak} ∈ P}.

Case 2.2.1: P contains some pair agents.
Given the stable partition P for (N, ≻), since the set of pair

agents NP is non-empty, we match all the pairs in the partition
P: µ(aj) = aj−1 for all aj ∈ {aj, aj−1} ∈ P and all other agents
remain unmatched: µ(l) = l otherwise. We first show that the
matching µ is weakly stable.

Suppose that (aj, al) ∈ BP(µ). If {aj} ∈ P with µ(aj) = aj
then, from the stability of P , we have µ(al) = al ≻al aj whenever
{al} ∈ P , and al−1 = µ(al) ≻al aj whenever al ∈ {al, al−1} ∈ P ,
which contradicts the assumption that (aj, al) ∈ BP(µ). If both{
aj, al

}
∈ NP and al ≻aj aj−1 = µ(aj), then, from the stability

of P , we have that µ(al) = al−1 ≻al aj, which contradicts the
assumption that (aj, al) ∈ BP(µ). Hence, for a pair of agents to
block µ, at least one of them should be a ring agent.

Then, let (aj, al) ∈ BP(µ) where aj ∈ NA and consider possible
preference relations among aj and al.

1. aj−1 ⪰aj al.
Since aj ∈ NA, aj+1 ≻aj aj−1 and hence aj+1 ≻aj aj−1 ⪰aj
al ≻aj aj = µ(aj). From the construction of the matching µ,
µ(aj+1) = aj+1 and hence (aj+1, aj) ∈ BP(µ). Together with
aj+1 ≻aj al, (aj+1, aj) ∈ BP(µ) implies that (aj, al) is a weak
blocking pair.

2. al ≻aj aj−1.
Notice first that if al ∈ NP and al ≻aj aj−1, from the stability
of P we have that µ(al) = al−1 ≻al aj, which contradicts
the assumption that (aj, al) ∈ BP(µ). Also, if al ∈ NS and
al ≻aj aj−1, from the stability of P we have that al ≻al aj,
which contradicts the assumption that (aj, al) ∈ BP(µ).
Thus, al ∈ NA. Since P is stable, al ≻aj aj−1 implies al−1 ⪰al
aj. This is equivalent to the scenario 1 of the current case
and hence (al, al+1) ∈ BP(µ). Together with al+1 ≻al al,
(al, al+1) ∈ BP(µ) implies that (aj, al) is a weak blocking
pair.

Then, the matching µ is weakly stable. If there is no matching
µ′ such that µ′(i) ≻i µ(i) for all i ∈ N , then the constructed
matching µ is also weakly efficient and we are done.

Suppose that there is another matching µ′ such that µ′(i) ≻i
µ(i) for all i ∈ N . First, note that if a pair agent aj ∈ NP is matched
with another pair agent al ∈ NP under µ′, then from the stability
of P , µ′(aj) = al ≻aj aj−1 = µ(aj) implies µ(al) = al−1 ≻al
aj = µ′(aj), contradicting the assumption that all agents prefer
the matching µ′ to µ. Also, if a pair agent aj ∈ NP is matched with
a singleton agent al ∈ NS under µ′, then from the stability of P ,
µ′(aj) = al ≻aj aj−1 = µ(aj) implies µ(al) = al ≻al aj = µ′(al),
contradicting the assumption that all agents prefer the matching
µ′ to µ. Then, each pair agent should be matched under µ′ with
a ring agent. That is, the set of mappings

N := {injective ν : NP → NA | for all aj ∈ NP , ν(aj) ≻aj aj−1 = µ(aj)}

is non-empty. Since N is finite, there is ν̂ ∈ N that is weakly

efficient for NP .



A. Atay, A. Mauleon and V. Vannetelbosch Journal of Mathematical Economics 94 (2021) 102465

s
t
m
w

f
a
w{
o
a
b

p

We construct the matching µ̂ such that µ̂(aj) = ν̂(aj) for all
aj ∈ NP and µ̂(l) = l for all l /∈ (NP ∪ ν̂(NP )). Notice that µ̂ must
atisfy weak efficiency because if another matching µ∗ is better
han µ̂ for all the agents, then its restriction µ∗

|NP would be a
ember of N contradicting the definition of ν̂. Furthermore, µ̂ is
eakly stable:
Suppose that (aj, al) ∈ BP(µ̂). If {aj} ∈ P with µ̂(aj) = aj then,

rom the stability of P , we have either µ̂(al) = al ≻al aj whenever
l ∈ NS , or µ̂(al) ≻al al−1 ≻al aj whenever al ∈ {al, al−1} ∈ P ,
hich contradicts the assumption that (aj, al) ∈ BP(µ̂). If both
aj, al

}
∈ NP and al ≻aj µ̂(aj) ≻aj aj−1 then, from the stability

f P , we have that µ̂(al) ≻al al−1 ≻al aj, which contradicts the
ssumption that (aj, al) ∈ BP(µ̂). Hence, for a pair of agents to
lock µ̂, at least one of them should be a ring agent.
Then, let (aj, al) ∈ BP(µ̂) where aj ∈ NA and consider possible

reference relations among aj−1 and al.

1. aj−1 ⪰aj al.
Since aj ∈ NA, aj+1 ≻aj aj−1 and hence aj+1 ≻aj aj−1 ⪰aj
al ≻aj µ̂(aj). From the construction of the matching µ̂, it
holds µ̂(aj+1) = aj+1 or µ̂(aj+1) ∈ NP . Whenever µ̂(aj+1) =

ap ∈ NP and aj+1 ≻ap ap−1, from the stability of P , we have
that aj ≻aj+1 µ̂(aj+1) = ap. Whenever µ̂(aj+1) = aj+1 with
aj+1 ∈ NA, it also holds that aj ≻aj+1 µ̂(aj+1) = aj+1. Hence
(aj+1, aj) ∈ BP(µ̂). Together with aj+1 ≻aj al, (aj+1, aj) ∈

BP(µ̂) implies that (aj, al) is a weak blocking pair.
2. al ≻aj aj−1.

Notice first that if al ∈ NP and al ≻aj aj−1, from the stability
of P , we have that µ̂(al) ≻al al−1 ≻al aj, which contradicts
the assumption that (aj, al) ∈ BP(µ̂). Also, if al ∈ NS and
al ≻aj aj−1, from the stability of P we have that al ≻al aj,
which contradicts the assumption that (aj, al) ∈ BP(µ̂).
Thus, al ∈ A ∈ P . Since P is stable, al ≻aj aj−1 implies
al−1 ⪰al aj. This is equivalent to the scenario 1 of the
current case and hence (al, al+1) ∈ BP(µ). Together with
al+1 ≻al al, (al, al+1) ∈ BP(µ) implies that (aj, al) is a weak
blocking pair.

Notice that if the stable partition P does not contain singleton
agents, the proof immediately follows by simply ignoring the
blocking pairs containing a singleton agent.

Case 2.2.2: P is formed by odd rings and singletons.

Case 2.2.2.1: There exists {ak} ∈ P with r1(ak) = ak.
The matching at which all agents are unmatched, µ(i) = i

for all i ∈ N , is weakly efficient since r1(ak) = ak = µ(ak).
From Theorem 1, we know that this matching µ is weakly stable.
Hence, the Procedure WSMATCH returns a weakly stable and
weakly efficient matching.

Case 2.2.2.2: There does not exist {ak} ∈ P such that r1(ak) = ak.
Notice that all singletons {ak} ∈ P have a top choice that is a

ring agent: r1(ak) = ai where ai ∈ A ∈ P . Then, match each ak
with her top choice if there is no {al} ∈ P such that r1(al) = ai
and ai−1 ≻ai al ≻ai ak: µ(ak) = ai = r1(ak), and leave all
remaining agents single: µ(l) = l otherwise. First, note that the
matching µ is weakly efficient since for some {ak} ∈ P , µ(ak) =

ai = r1(ak).
Next, let us show that the matching µ is also weakly stable.

Note that if {ak} ∈ P is matched under µ, then µ(ak) = r1(ak), and
hence a matched singleton agent ak cannot be part of a blocking
pair. Whenever {aj} ∈ P with µ(aj) = aj and {al} ∈ P with
µ(al) = al, then aj and al cannot form a blocking pair: if al ≻aj
aj = µ(aj), then the stability of P implies µ(al) = al ≻al aj and if
aj ≻al al = µ(al), then the stability of P implies aj = µ(aj) ≻aj al.
Hence, for a pair of agents to block µ, at least one of them should
be a ring agent.
7

Note first that for all aj ∈ NA, µ(aj) = aj or µ(aj) = ak where
{ak} ∈ P . Whenever µ(aj) = aj, aj+1 ≻aj aj−1 ≻aj aj = µ(aj).
Whenever µ(aj) = ak, we have r1(ak) = aj and then, the stability
of P implies that aj−1 ≻aj ak = µ(aj). Hence, aj+1 ≻aj aj−1 ≻aj
µ(aj) for all aj ∈ NA. Thus, (aj, aj+1) → (aj+1, aj+2) → . . . →

(aj−1, aj) → (aj, aj+1), and any pair of consecutive agents forms a
blocking pair.

Suppose (aj, al) ∈ BP(µ) where aj ∈ NA. Whenever {al} ∈ P ,
we have that µ(al) = al since a matched singleton agent cannot
be part of a blocking pair. Since µ(al) = al and P is stable, aj ≻al al
implies that aj−1 ≻aj al. Then, together with (aj−1, aj) ∈ BP(µ), it
implies that (aj, al) is a weak blocking pair. Whenever al ∈ NA,
consider the possible preference relations among aj and al for
(aj, al) ∈ BP(µ).

1. aj−1 ⪰aj al.
Note that (aj, aj+1) ∈ BP(µ). Together with aj+1 ≻aj al, it
implies that (aj, al) is a weak blocking pair.

2. al ≻aj aj−1.
Since P is stable, al ≻aj aj−1 implies that al−1 ≻al aj.
Together with (al, al−1) ∈ BP(µ), it implies that (aj, al) is a
weak blocking pair.

Case 2.2.3: P is formed by an even number of odd rings.
For notational convenience, let P = {A1, . . . ,AT }, where T is

even.

Case 2.2.3.1: There is some agent ai ∈ A1 ∈ P such that there
exist a ring As ∈ P , s ̸= 1, and aj ≻ai−1 ai−2 with aj ∈ As
∈ P .

1. There exists a unique agent ai ∈ A1 ∈ P such that there
exist a ring As ∈ P , s ̸= 1, and aj ≻ai−1 ai−2 with aj ∈ As ∈

P .
We construct the matching µ at which ai is matched with
her top choice r1(ai): µ(ai) = r1(ai) and all other agents
remain unmatched: µ(l) = l otherwise. Since µ(ai) = r1(ai),
the matching µ is weakly efficient. Let us next show that
the matching µ also satisfies weak stability.
First, suppose A1 = {ai−2, ai−1, ai}. Notice that r1(ai) =

ai−2 since ai is the unique agent satisfying the condition
aj ≻ai−1 ai−2 in A1. Then, µ(ai) = ai−2 = r1(ai) and hence
(ai, ai−1) /∈ BP(µ). Note also that (ai−1, ai−2) ∈ BP(µ) since
ai−2 ≻ai−1 ai−1 = µ(ai−1) and ai−1 ≻ai−2 ai = µ(ai−2).
Then, (ai−1, ai−2) is a weak blocking pair since aj ≻ai−1
ai−2 and (ai−1, aj) ∈ BP(µ). For all other blocking pairs
(ak, al) ∈ BP(µ) where both {ak, al} ∈ NA, it holds either
(ak, al) → (ak, ak+1) or (ak, al) → (al, al+1) since P is stable
and under the matching µ, µ(ai) = r1(ai) and all other
agents are unmatched.
Hence, all blocking pairs are weak and the matching µ is
also weakly stable.
Now, let |A1| ≥ 5. Recall that ai is the unique agent such
that aj ≻ai−1 ai−2 with aj ∈ As ∈ P , s ̸= 1. Thus, r1(ai) ∈ A1.
Note that ai−1 ̸= r1(ai) = at ∈ A1 ∈ P since ai+1 ≻ai ai−1.
Then, µ(ai) = at and all other agents remain unmatched.
Since µ(ai) = r1(ai), (ai−1, ai) /∈ BP(µ). Then, we need to
show that (ai−1, ai−2) is a weak blocking pair. From aj ≻ai−1
ai−2 ≻ai−1 ai−1 = µ(ai−1) and µ(aj) = aj, (aj, ai−1) ∈ BP(µ).
Together with aj ≻ai−1 ai−2, it implies that (ai−1, ai−2) is a
weak blocking pair. For all other blocking pairs (ak, al) ∈

BP(µ) where both {ak, al} ∈ NA, it holds either (ak, al) →

(ak, ak+1) or (ak, al) → (al, al+1) since P is stable and under
the matching µ, µ(ai) = r1(ai) and all other agents are
unmatched.
Hence, all blocking pairs are weak and the matching µ is
also weakly stable.
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2. There exist several ring agents {ai, ai′} ∈ A1 ∈ P such
that there exist a ring As ∈ P , s ̸= 1, and aj ≻ai−1 ai−2,
aj ≻ai′−1

ai′−2 with aj ∈ As ∈ P .

Note that there can be different agents
{
aj, aj′

}
∈ As ∈ P

with s ̸= 1 such that aj ≻ai−1 ai−2, aj ≻ai′−1
ai′−2, and

aj′ ≻ai−1 ai−2, aj′ ≻ai′−1
ai′−2 where {ai, ai′} ∈ A1 ∈ P .

In that case, we fix one of those agents aj∗ ∈ As ∈ P with
s ̸= 1 for which there exist several ring agents {ai, ai′} ∈

A1 ∈ P such that aj∗ ≻ai−1 ai−2, aj∗ ≻ai′−1
ai′−2.

Given aj∗ ∈ As ∈ P with s ̸= 1, we distinguish between
two cases.

(a) Agents {ai, ai′} ∈ A1 ∈ P satisfying the condition are
not consecutive agents in A1 ∈ P .
Notice that since agents satisfying the condition are
not consecutive, whenever |A1| = 3 there exists a
unique agent satisfying the condition which contra-
dicts the statement. Hence, we consider |A1| ≥ 5.
Given aj∗ ∈ As ∈ P with s ̸= 1, we fix ai∗ such that
ai−1 ≻aj∗ ai∗−1 among all ring agents ai ∈ A1 ∈ P
with aj∗ ≻ai−1 ai−2. That is, ai∗ is the agent that
satisfies the condition aj∗ ≻ai∗−1 ai∗−2 and ai∗−1
is the least preferred by the agent aj∗ among all
ring agents that prefer aj∗ more than her immediate
predecessor. Then, we match ai∗ with her top choice
r1(ai∗ ): µ(ai∗ ) = r1(ai∗ ) and all other agents remain
unmatched: µ(l) = l otherwise. Notice that, since the
agents that satisfy the condition are not consecutive
agents, ai∗+1 does not satisfy the condition. Hence,
aj ≻ai∗ ai∗−1 does not hold. Then, r1(ai∗ ) ∈ A1. Since
ai∗ is matched with her top choice, the matching
µ is weakly efficient. The argument to prove weak
stability of matching µ will be identical to scenario
1 of the current case (when |A1| ≥ 5) except that
we need to replace i with i∗.

(b) Agents ai ∈ A1 ∈ P satisfying the condition are
consecutive agents in A1 ∈ P .
If all agents ai ∈ A1 satisfy the condition aj∗ ≻ai−1
ai−2 with aj∗ ∈ As ∈ P , s ̸= 1, we fix ai∗ ∈

A1 such that ai′ ≻aj∗ ai∗ among all ring agents
{ai′ , ai∗} ∈ A1 ∈ P . Then, we match ai∗ with her top
choice r1(ai∗ ): µ(ai∗ ) = r1(ai∗ ) and all other agents
remain unmatched: µ(l) = l otherwise. Since ai∗
is matched with her top choice, the matching µ is
weakly efficient. Next, let us show that the matching
µ is also weakly stable.
Since all agents in the odd ring A1 satisfy the above
condition and we fix ai∗ such that ai′ ≻aj∗ ai∗ among
all ring agents {ai′ , ai∗} ∈ A1 ∈ P , ai∗−1 ≻aj∗ ai∗ .
Then, (aj∗ , ai∗−1) ∈ BP(µ). Together with aj∗ ≻ai∗−1
ai∗−2, it implies that (ai∗−1, ai∗−2) is a weak blocking
pair. For all other blocking pairs (ak, al) ∈ BP(µ)
where both {ak, al} ∈ NA, it holds either (ak, al) →

(ak, ak+1) or (ak, al) → (al, al+1) since P is stable and
under the matching µ, µ(ai∗ ) = r1(ai∗ ) and all other
agents are unmatched. Hence, all blocking pairs are
weak and the matching µ is also weakly stable.
If a subset of consecutive agents {ai, ai+1, . . .} ⊊
A1 ∈ P satisfy the condition aj∗ ≻ai−1 ai−2 with
aj∗ ∈ As ∈ P , s ̸= 1, then there is at least one agent
ai+1 ∈ A1 such that it does not hold aj∗ ≻ai ai−1.
Then, we fix one agent ai∗ ∈ A1 such that aj∗ ≻ai∗−1
ai∗−2 and ai∗+1 does not satisfy the condition aj∗ ≻ai∗
ai∗−1. Then, we match ai∗ with her top choice r1(ai∗ ):
µ(ai∗ ) = r1(ai∗ ) and all other agents remain single:
8

µ(l) = l otherwise. Note that since aj∗ ≻ai∗ ai∗−1 does
not hold, r1(ai∗ ) ∈ A1. Since ai∗ is matched with her
top choice, the matching µ is weakly efficient. Next,
we show that the matching µ is also weakly stable.
First, let A1 = {ai∗−2, ai∗−1, ai∗}. Recall that r1(ai∗ ) ∈

A1. Moreover, since there are consecutive agents
satisfying the condition in A1, aj∗ ≻ai∗−1 ai∗−2 and
aj∗ ≻ai∗−2 ai∗ . Notice first that r1(ai∗ ) ̸= ai∗−1 since
P is stable. Then, it holds that r1(ai∗ ) = ai∗−2, and
hence µ(ai∗ ) = ai∗−2 and all other agents remain
single. Since A1 = {ai∗−2, ai∗−1, ai∗}, ai∗−1 ≻ai∗−2
ai∗ = µ(ai∗−2). Moreover, (aj∗ , ai∗−1) ∈ BP(µ) since
µ(aj∗ ) = aj∗ , µ(ai∗−1) = ai∗−1 and they are mutually
acceptable as aj∗ ≻ai∗−1 ai∗−2 holds. Together with
(aj∗ , ai∗−1) ∈ BP(µ), aj∗ ≻ai∗−1 ai∗−2 implies that
(ai∗−1, ai∗−2) is a weak blocking pair. For all other
blocking pairs (ak, al) ∈ BP(µ) where both {ak, al} ∈

NA, it holds either (ak, al) → (ak, ak+1) or (ak, al) →

(al, al+1) since P is stable and under the matching µ,
µ(ai∗ ) = r1(ai∗ ) and all other agents are unmatched.
Hence, all blocking pairs are weak and the matching
µ is also weakly stable.
Second, let |A1| ≥ 5. The argument to prove weak
stability of matching µ will be identical to scenario
1 of the current case (when |A1| ≥ 5) except that
we need to replace i with i∗.

Case 2.2.3.2: There does not exist ai ∈ A1 ∈ P such that there
exist a ring As ∈ P , s ̸= 1, and aj ≻ai−1 ai−2 with aj ∈ As ∈ P .

Case 2.2.3.2.1: There exist some agent ai ∈ A1 ∈ P such that
there exist a ring As ∈ P , s ̸= 1, and ai−1 ≻ai aj ≻ai ai,
aj−1 ≻aj ai ≻aj aj with aj ∈ As ∈ P .

Fix an arbitrary odd ring A∗
∈ P . We construct a matching µ

by running an analogue of the deferred acceptance algorithm10

between A∗ and N \ A∗ as follows:

Step 1: Each ai ∈ A∗ proposes to the best acceptable agent among
N\A∗, if any. Each aj ∈ N\A∗ tentatively accepts the best proposal
and rejects all others.

Step t ≥ 2: Each ai who is not currently engaged proposes to the
best acceptable agent among N \A∗ that ai has not yet proposed
to. Then, each aj ∈ N \ A∗ chooses from the proposals made at
the current step and her current tentative match (if any), and
tentatively accepts the best one.

Since there are finitely many agents, if no new proposal is
made at some Step T, then all the tentative matches are final-
zed.

Let us show that the constructed matching µ is weakly stable.
Suppose (aj, al) ∈ BP(µ).

First note that, since µ(al) = al or al−1 ≻al µ(al) ≻al al for
all al ∈ N , for any odd ring A ∈ P (including A∗), any two
consecutive agents {aj, aj+1} in A form a blocking pair for the
matching µ. Then, (aj, aj+1) → (aj+1, aj+2) → . . . → (aj−1, aj) →

(aj, aj+1). Next, consider possible preference relation among aj
and al for (aj, al) ∈ BP(µ).

1. aj−1 ⪰aj al.
Note that (aj+1, aj) ∈ BP(µ). Together with aj+1 ≻aj al, it
implies that (aj, al) is a weak blocking pair.

2. al ≻aj aj−1.
Since P is stable, al ≻aj aj−1 implies al−1 ≻al aj. Since any
two consecutive agents form a blocking pair, (al−1, al) ∈

10 We thank one of the Reviewers for suggesting us this algorithm in order
to construct the matching µ.
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BP(µ). Together with al−1 ≻al aj, (al−1, al) ∈ BP(µ) implies
that (aj, al) is a weak blocking pair.

We still need to show that this matching is weakly efficient.
Suppose on the contrary that there exists another matching µ′

such that µ′(al) ≻al µ(al) for all al ∈ N . Since A∗ is an odd ring,
there should be at least one ai ∈ A∗ such that µ′(ai) /∈ A∗. Then,
however, ai must have proposed to µ′(ai) at some step t of the
above algorithm. The only possible reason that ai is not matched
with µ′(ai) at µ is that µ′(ai) chooses some al ∈ A∗ over ai. This
implies that µ′(ai) prefers µ(µ′(ai)) to ai = µ′(µ′(ai)), which is
a contradiction to the assumption that µ′(al) ≻al µ(al) for all
al ∈ N . Hence, the matching µ is also weakly efficient.

Case 2.2.3.2.2: There does not exist ai ∈ A1 ∈ P such that there
exist a ring As ∈ P , s ̸= 1, and ai−1 ≻ai aj ≻ai ai, aj−1 ≻aj ai ≻aj aj
with aj ∈ As ∈ P .

That is to say, all agents have preferences only over agents
from the same odd ring. Then, the weakly stable matching re-
turned by WSMATCH, µ(i) = i for all i ∈ N , is also weakly
efficient since all agents from an odd ring cannot be strictly better
off simultaneously as their preferences contain only agents from
the same odd ring.

We have shown that there always exists a matching that
satisfies both weak stability and weak efficiency. Together with
Theorem 2, it follows that given a roommate problem (N, ≻), the
bargaining set Z(N, ≻) is always non-empty. □

5. Conclusion

Since stable matchings may not exist in the roommate prob-
lem, we have considered a weaker notion of stability based on
the credibility of blocking pairs. We have extended the weak
stability notion of Klijn and Massó (2003) for marriage problems
to roommate problems. First, we have shown that although stable
matchings may not exist, a weakly stable matching always exists
in a roommate problem. Second, we have adopted a solution con-
cept based on the credibility of the deviations for the roommate
problem: the bargaining set. We have shown that weak stability
is not sufficient for a matching to be in the bargaining set. Third,
we have generalized the coincidence result for marriage problems
of Klijn and Massó (2003) between the bargaining set and the
set of weakly stable and weakly efficient matchings to roommate
problems. Finally, we have proved that the bargaining set for
roommate problems is always non-empty by making use of the
coincidence result.

An interesting direction for future research is to study the
robustness of the bargaining set for matching problems. The
bargaining set checks the credibility of an objection at a given
matching. Only objections which have no counterobjections are
justified, but counterobjections are not required to be justified.
Dutta et al. (1989) propose a notion of a consistent bargaining
set in which objections and counterobjections need to be justified
that could be investigated in a future in roommate problems.

A possible direction for further research is to study computa-
tional questions related to the bargaining set. We have provided
a procedure (Theorem 1) to obtain a weakly stable matching for
a given roommate problem. First, a question related to the car-
dinality of the returned matching by WSMATCH can be studied.
Second, an algorithm to find all weak stable matchings and its
computational complexity are other questions that we leave for
future research.
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