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Abstract A generalization of the classical three-sided assignment market is consid-
ered, where value is generated by pairs or triplets of agents belonging to different
sectors, as well as by individuals. For these markets we represent the situation that
arises when some agents leave the market with some payoff by means of a gener-
alization of Owen (Ann Econ Stat 25-26:71-79, 1992) derived market. Consistency
with respect to the derived market, together with singleness best and individual anti-
monotonicity, axiomatically characterize the core for these generalized three-sided
assignment markets. When one sector is formed by buyers and the other by two dif-
ferent type of sellers, we show that the core coincides with the set of competitive
equilibrium payoff vectors.
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1 Introduction

We consider a market with three-sectors where value is obtained by means of coalitions
formed by agents of different sectors, that is, either triplets, pairs or individuals. Once
the valuations of all these basic coalitions are known, a coalitional game is defined,
the worth of an arbitrary coalition being the maximum worth that can be obtained by
a partition of this coalition into basic ones.

Think, for instance, of one sector formed by firms providing landline telephone and
internet service, on the second sector firms providing cable TV and on the third sector
firms providing mobile telephone service. A triplet formed by one firm of each sector
can achieve a profit by pooling their customers and offering them more services, but
also a firm alone or a pair of firms of different sectors can attain some value.

These markets have already been considered in Tejada (2013) to see that agents of
different sectors do not need to be complements and agents of the same sector do not
need to be substitutes. Clearly, this class of coalitional games includes the classical
three-sided assignment games of Quint (1991b) where value is only generated by
triplets of agents belonging to different sectors. Another possible generalization of
three-sided assignment games would be just assigning a reservation value to each
individual and assuming that whenever an agent does not form part of any triplet then
this agent can attain his/her reservation value, in the way Owen (1992) generalizes the
classical two-sided assignment game of Shapley and Shubik (1972).

The difference between the generalized three-sided markets that we consider and
the three-sided assignment markets with individual reservation values is that when
an agent does not form part of a triplet in the optimal partition (that we will name
optimal matching), apart from being alone in an individual coalition, he/she may form
part of a two-player coalition with some agent belonging to a different sector and,
in that case, the value of this two-player coalition may be larger than the addition of
the individual reservation value of the two agents. As a consequence, ours is a wider
class since it includes games that are not strategically equivalent to a Quint (1991b)
three-sided assignment game. Nevertheless, as in the classical three-sided assignment
games, these games may not be balanced (the core may be empty).

However, we present a subclass of balanced generalized three-sided assignment
markets. Besides non-negativeness, two additional properties define this subclass: (a)
the worth of a triplet is the addition of the worths of the three pairs that can be formed
with its members and (b) there is an optimal partition such that, when restricted to
each pair of sectors, is also optimal for the related two-sided market. This subclass
of generalized three-sided assignment markets is inspired by the balanced subclass
introduced by Quint (1991b) and the supplier—firm—buyer market of Stuart (1997),
where also the value of a triplet is obtained by the addition of the value of some of
the pairs that can be formed with its elements. However, in their classes, such a pair
cannot attain its value if not matched with an agent of the remaining sector.

We restrict to the three-sided case to keep notation simpler, but all the arguments
and results on the present paper can be extended to the multi-sided case.

In this class of generalized three-sided assignment markets, we introduce a reduced
market at a given coalition and payoff vector, which represents the situation in which
members outside the coalition leave the game with a predetermined payoff and the
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agents that remain in the market reevaluate their coalitional worth taking into account
the possibility of cooperation with the agents outside. In the case of only two sectors,
this reduced market coincides with the derived market defined by Owen (1992) for
two-sided assignment markets with agents’ reservation values.

Making use of consistency with respect to the derived market and two additional
axioms, singleness best and individual anti-monotonicity, we provide an axiomatic
characterization of the core on the domain of generalized three-sided assignment
markets. Sasaki (1995) and Toda (2005) characterize the core on the domain of two-
sided assignment markets by means of some monotonicity property that is not satisfied
by the core in the three-sided case. The reason is that when we raise the value of a
triplet, a pair or an individual in a three-sided market, the new market may fail to have
core elements. This is why the previous characterizations cannot be straightforwardly
extended to the three-sided case.

In the last part of the paper, we consider that one of the sectors is formed by buyers
and the others by sellers of two different types of goods. Each buyer can buy at most
one good of each type and valuates all basic coalitions she/he can take part in. From
these valuations we introduce the demand of a buyer, given a price for each object on
sale. Then, as usual, prices are competitive if there exists a matching such that each
buyer takes part in a basic coalition in its demand set, and prices of unsold objects are
zero. We show that the set of payoff vectors related to competitive equilibria coincide
with the core. This generalizes the result in Gale (1960) for two-sided assignment
markets and Tejada (2010) for the classical multi-sided assignment markets where
buyers are forced to acquire exactly one item of each type.

The paper is organized as follows. The model is described in Sect. 2. The derived
consistency of the core and the nucleolus is proved in Sect. 3, and an axiomatic
characterization of the core is presented in Sect. 4. Section 5 focuses on the case
with one sector of buyers and two sectors of sellers of different type of goods to
prove the coincidence of core elements and competitive equilibria payoff vectors. The
“Appendix” contains some technical proofs.

2 The model

In this section, we introduce a generalized three-sided assignment market and its
corresponding assignment game.

Let Uy, Uy and U3 be three pairwise disjoint countable sets. A generalized three-
sided assignment market consists of three different sectors, M| C Uy, My C U,, and
M3 C Uz with a finite number of agents each, such that N = M} U M, U M3 # 0,
and a valuation function v. The basic coalitions in this market are the ones formed by
exactly one agent of each sector and all their possible subcoalitions. Let us denote by
B this set of basic coalitions,

B={{i,jk}|ieM,je M, ke M)
U{{i, j}lieM.,jeM,rsel{l,2,3),r#stUl{i}|ieM UM,UMs}.
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The valuation function v, from the set B to the real numbers, R, associates to each
basic coalition its value v(S).

Given a generalized three-sided assignment market y = (M1, M>, M3; v), for
each non-empty coalition S € N = M| U M, U M3 we can define a submarket
vis = MiNS, MoNS, M3NS; vs), where (vs)(E) = v(E) forall E € BS={(R e
B | R C S}. Notice that if one of the sectors is empty, then this generalized three-
sided assignment market is a two-sided assignment market with reservation values as
introduced in Owen (1992).

Let®? # S C N be a coalition such that § = §1 U S, U S3 with §1 € M1, S» C My,
and S3 € M3. Then, a matching p for S is a partition of S in coalitions of BS. Let
M(S1, $2, S3) be the set of all possible matchings for coalition § = S} U S, U S3.
A matching i € M(S1, S2, S3) is optimal for the submarket yjg if ZEEM v(E) >
ZEE;/J v(E) for any u' € M(S1, S2, S3). We denote by M,, (S, 2, S3) the set of
optimal matchings for the market ys.

Given a generalized three-sided assignment market y = (M1, My, M3; v), its
corresponding generalized three-sided assignment game' is a pair (N, w, ) where
N = M; U M U M3 is the player set and the characteristic function w,, satisfies
wy(P) =0andforall S C N,

w, (S) = max v(E) ¢,
Y HEM(S1,52,5) %

where §1 = SN My, S = SN M and S3 = § N M3. Notice that the game (N, w) )
is superadditive, because it is a special type of partitioning game as introduced by
Kaneko and Wooders (1982).

From now on, we denote by I3_gaMm indistinctly the set of generalized three-sided
assignment markets or games.

An outcome for a generalized three-sided assignment market will be a matching
and a distribution of the profits of this matching among the agents that take part.

Given y = (M1, M>, M3; v), a payoff vector is x € RY, where x; stands for the
payoff of player i € N. We write x|s to denote the projection of a payoff vector x to
agents in coalition § € N. Moreover, x(§) = Zie s Xxi with x(J) = 0. A payoff vector
x e RV is individually rational for y if x; > w,, ({i}) for all i € N, and efficient if
xX(N) = wy, (N).

The core of a generalized three-sided assignment market y = (M7, M>, M3; v) is
the core of the associated assignment game (N, wy, ), where N = M; U M, U M3.
Then, a market y is balanced if its associated game (N, w, ) has a non-empty core.
It is straightforward to see that this core is formed by those efficient payoff vectors

LA game is a pair formed by a finite set of players N and a characteristic function r that assigns a
real number r(S) to each coalition S € N, with r() = 0. The core of a coalitional game (N, r) is
C(r) ={x e RV | DienXi =7(N), Dicsxi = r(S) forall § € N}. A game is balanced if it has a
non-empty core.

A game is said to be superadditive if for any two disjoint coalitions S,7 € N, SN T = {, it holds
r(SUT) >r(S)+r(T).
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576 A. Atay et al.

that satisfy coalitional rationality for all coalitions in B. Given any optimal matching

Cly)=13x¢€ RN x(N) = Z v(E) and x(E) > v(E) forall E € B
Eep

As a consequence, given any optimal matching u, if x € C(y), then x(E) = v(E)
forall E € u. Since this class is a generalization of the classical three-sided assignment
games, the core may be empty.

The following two examples show that the class of generalized three-sided assign-
ment games is indeed different from the class of classical three-sided assignment
games. If we give values to some two-player coalitions in a classical three-sided
assignment game with empty core (non-empty core), the core of the new generalized
three-sided assignment game may become non-empty (empty). Moreover, we show
that a generalized three-sided assignment game may not be strategically equivalent to
any classical three-sided assignment game.

Example 1 Consider M| = {1,2}, My = {1’,2'} and M3 = {1”,2"} and the three-
sided assignment game taken from Quint (1991b) where the value of triplets is given
by the following three-dimensional matrix A,

2 2

1 (0 O 1 (0 1
2\0 1 2\1 1)°

1// 2//

and the core is shown to be empty.

Define now a generalized three-sided market y; = (M, M2, M3; v;) where
vi({i, j,k}) = ajji for (i, j, k) € My x My x M3, vi({1, ') =1and v1(S) =0
for any other § € B. Notice that w,, ({1,1,1"}) = w,, ({1,1,2”"}) = 1 and
x=1(0,0;1,1;0,0) € C(y).

Moreover, the game (N, wy,), where N = My U M, U M3, is not strategically
equivalent to any classical three-sided assignment game. Indeed, if there existed d €
RY and a three-dimensional matrix B such that wy, () = wp(S) + D ;cgd; for all
S € N, then

I =wy, (1, 1/}) =wp({1, 1/}) +di+dr=d| +d>

which means either d; > 0 or d> > 0. If we assume without loss of generality that
dy > 0, then we get a contradiction since 0 = w,, ({1}) = wp({1}) +d; > 0.

Example 2 Consider now a classical three-sided assignment game with a non-empty

core givenin Quint (1991b). Itisdefinedby M| = {1, 2}, My = {1/, 2"}, M3 = {1”, 2"}
and the three-dimensional matrix C, where an optimal matching is in boldface:
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1 2 1 2
1 (2 0 1 (3 2
2\1 0 2\0 2)°
1// 2//
Define now a generalized three-sided market y» = (M, My, M3; va) where

v({i, j,k}) = ciji for (i, j, k) € My x My x M3, v2({1,2'}) = v2({2,1'})) = 2
and v>(S) = O for any other S € B. This implies that w,, ({1, 1’,2,2'}) = 4. If
x € C(y2), wehave x| +x1/ +x2 +xp > 4 and hence x;» = xp» = 0. Moreover, from
wy, ({1, 1, 1”}) = 2 we have x| + x1/ = x1 + x1’ + xy# = 2. On the other side, from
wy, ({1, 1,2"}) = 3, x1 + xp = x1 + xpy + xp» > 3, which leads to a contradiction
and implies that C(y») = 0.

To conclude the discussion of the model, we introduce a subclass of generalized
three-sided assignment markets. For the markets in this subclass, core allocations
always exist.

2.1 A subclass of markets with non-empty core

We say a generalized three-sided assignment market is 2-additive if the three following
conditions hold. The first one requires non-negativeness of the valuation function,
with null value for single-player coalitions. Secondly, the valuation of each triplet
(i, j,k) € M; x My x M3 is the sum of the valuations of all pairs of agents in
the triplet. Finally, we require the existence of an optimal matching that induces an
optimal matching in each two-sided market. The reader will notice that the spirit of
this class of 2-additive generalized three-sided assignment markets, that we denote by
1"32‘11% AM> 18 similar to that of the balanced classes of multi-sided assignment games in
Quint (1991b) and Stuart (1997). In both cases, the authors impose that the worth of
a triplet is the addition of some numbers attached to its pairs. The difference is that
in their models a pair cannot attain its worth if not matched with a third agent of the
remaining sector, while in our case there is an underlying two-sided market for each
pair of sectors.

As in Quint (1991b), we will assume from now on that the market is square, that is
|M1| = |M>| = |M3]|. Let us introduce some notation: given a generalized three-sided
assignment market y = (M1, My, M3; v), forall r, s € {1,2,3}, r < s, we consider
the two-sided market y"* = (M,, My; vigm,um; ). Then, we denote by My rs (M, M)
the set of optimal matchings for the two-sided market ", that is, partitions of M, U M
in mixed pairs and singletons that maximize the sum of the valuations of the coalitions
in the partition. And C (") stands for the core of the underlying two-sided assignment
game (M, U My, wyrs).

Given a matching u € M (M1, M>, M3) and two different sectors r, s € {1, 2, 3},
r < s, the matching x induces a matching 1" in the two-sided market y"* simply by
defining E € u"* if there exists a basic coalition E’ € p suchthat E = E'N(M,UMj)
and E # (.

Definition 1 A generalized three-sided assignment market y = (M, M2, M3; v),
with |M| = |M»| = |M3], belongs to the class F;‘fdGAM if and only if
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578 A. Atay et al.

1. v>0and v({k}) =0forallk € M| U My U M3,

2. v({i, j, k) =v{i, j) +v{i, k}) + v{J, k}) for all (i, j, k) € M| x My x M3,

3. there exists 4 € M, (M, M2, M3) such that u™* € Myrs(M,, M) forallr, s €
{1,2,3}, r <s.

Conditions (1) and (2) imply that the valuation function v is superadditive. Condi-
tion (3) requires that there is an optimal matching i € M., (M1, M>, M3) that induces
an optimal matching in each bilateral market y", for » < s. Next proposition shows
that the three conditions together guarantee that the core of any generalized three-sided
assignment market in the class 1“3ad‘é AM 1S non-empty.

Proposition 1 Each 2-additive generalized three-sided assignment market is bal-
anced.

Proof Let y = (M1, My, M3; v) € F3dGAM and let u = {E1, E2,..., Ep} be an
optimal matching, u € M, (M1, M2, M3), such that u"* € Myrs(M,, My) for all
r,s € {1,2,3}, r < s. Forall r,s € {1,2,3},r <s,and! € {1,2,..., p}, define
E[* = E;N(M,UM;) and notice thatby definition ™ = {E[* | 1 <1 < p, E]* # 0}.

From Shapley and Shubik (1972), it is known that each two-sided assignment
market is balanced. So, take core allocations (x', y!) € C(y'?), (x2,2%) € C(y"3)
and (y3, %) € C(y?). We will see that (x + x2, y! +y3, 22+ 23) € C(p).

By optimality of u!2, we have that if for some / € {1,2,..., p}, E}* = {i, j},
then x1 + y1 =v({i, j}. Similarly, if E]2 = {i}, fori € My, then xl = 0; and if
E, 2= f0r some j € My, then y = 0. Analogous equalities are obtained for E; 13
and EP, forl € {1,2,..., p}.

Hence,
Z(X,-l +x7) + Z v +y)+ Z (z; +2)
ieM JjeM> keMs
p
=1 D Gl Hyh+ D R+ DL i+
I=1"] {i,j)eE}? {i.k}eE)? {j.k)eEP
) -
=1 D v jh+ D v kb+ D v({j.kD
=1 {i,j}eEllz {i.k}eEP {j.k)eEP

=

=D v(E) = wy (N).

=1

Once proved efficiency, it only remains to prove coalitional rationality of the payoff
vector (x1 + x2, y1 + y3, 2+ z3). Indeed, take any {i, j, k} € B and notice that

iyl g =0l b+ P+ + 07+
> v({i, j) +vl{i, k) +v({j, k) = v{i, j, k})

\
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where the inequality follows from the core constraints of (x!, y1 ), (x2, z2) and ( y3, 2)
in each two-sided market.

Similarly, if {i, j} € B, we may assume without loss of generality thati € M and
Jj € M, and hence, taking into account xiz > v({i}) = 0 and yj3. >v({j}) =0, we
get

X +xP+yi+y) =0+ y) x4y = o, ).

Finally, if {i} € B, let us assume without loss of generality that i € M;j. Then
x}! +x? > 0 = v({i}) follows also from the individual rationality of (x!, y!) and
(%, 2%). o

In the above proposition, we have deduced the existence of core elements for y €
F;ﬂ% Aam Dy operating with three core elements of the related two-sided markets.
However, as the next example shows, there are 2-additive generalized three-sided
markets where not all core elements can be obtained in this way.

Example 3 Let us consider a generalized three-sided assignment market y where
My ={1,2}, M, = {1’,2'} and M3 = {1”,2"}. The value of individual coalitions is
null, the value of those basic coalitions formed by a pair of agents is given by

]/ 2/ 1// 2// 1// 2//
1 (@ 6 1(® 9 ' (® 0
2 \o @ 2\1 6 »\8 @)

and the value of triplets is given by the following three-dimensional matrix

2 2

1 (12 20 1 (13 22
2\3 13 2\5 16)°
" 2//

1

The reader can check that the above values define a 2-additive generalized three-
sided market. Optimal matchings of the underlying two-sided markets are circled and
the optimal matching of the three-sided market is shown in boldface. The payoff
vector u = (6,0;0, 8; 6, 8) belongs to the core, but cannot be obtained by core
allocations of the three underlying two-sided assignment markets. Indeed, if there
existed (x', y!) € C(¥!?), x%2,2%) € C(y¥") and (»3,2%) € C(y¥??) such that
(x1+x2; y1+y3; z2+z3) =(6,0;0,8;6,8),then0 = le —l—x% and0 = yf +yf imply
X3 = yf = 0. Then, from the core constraints in the underlying two-sided markets,
X5 —i—z% = Sandyf—i—z? = 2,weobtainz§ = Sandz? = 2. Now, 6 = z%~|—z?
implies z2 = 4, and by substitution in (x2, z2) we obtain (x2,z?) = (x2,0; 4, 5).
But such a payoff vector is not in the core of y'3 since the two core constraints
x12 + z% = x% +4 =6and x12 + z% = x% + 5 > 9 are not compatible.

Once our model is established and one subclass with non-empty core is shown, we
look for a notion of reduction that makes the core a consistent solution on the class of
generalized three-sided assignment markets.
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3 Consistency of the core and the nucleolus

In this section, we introduce the derived market (and game) for the generalized three-
sided assignment market, and the corresponding consistency property.

Given any coalitional game, and given a particular distribution of the worth of the
grand coalition, we may ask what happens when some agents leave the market after
being paid according to that given distribution. The remaining agents must reevaluate
the worth of all the coalitions they can form. The different ways in which this reeval-
uation is done correspond to the different notions of reduced game that exist in the
literature.

Maybe the best known notion of reduced game is that of Davis and Maschler (1965),
where the remaining coalitions take into account what they could obtain by joining
some agents that have left, with the condition of preserving the amount they have
already been paid.

Definition 2 (Davis and Maschler 1965) Given a generalized three-sided assignment
game (N, w, ), a non-empty coalition S and a payoff vector x € RN\S | the Davis and
Maschler reduced game for the coalition S at x is the game (S, wf’x ) that is defined
by

0 it T =0,
wSH(T) = { wy(N) = x(N\S) if T =S8,
ngav’is{wy(T UQ)—x(Q)}  otherwise.

In general, the reduced game of a generalized three-sided assignment game is not
superadditive, and hence it is not a generalized three-sided assignment game. Take
for instance coalition S = {1, 2/, 1”,2”} and the core element u = (6, 0; 0, 8; 6, 8)
in the market of Example 3 and notice that w)f’”({l”}) + wf’“({Z”}) =34+5>7=
wi‘,u ({l//, 2//}).

To solve this, we introduce a new reduction for the generalized three-sided assign-
ment market (and game) that extends the derived game introduced by Owen (1992)
for the two-sided case. We will see that this notion of reduced game is closely related
to the Davis and Maschler reduction.

Definition 3 Given a generalized three-sided assignment market y = (M, M>,
M3;v), 0 #8 = S5USUS3, § # N, where S; € My, S € M, S3 € M;
and x € RV\S, the derived market at S and x is 75 = (1, S», S3; 05*) where

35¥(E) = max {v(EU Q) —x(Q)} forall E € B5. (D)
QCN\S
EUQeB

Then, the corresponding derived game at S and x is (S, wys.x) where forall R € S,

wysx (R) = max S ()L 2
pox (R) ueM(MmR,Msz,MmR)[% ( )} 2)
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To obtain the derived game, we first consider the valuation in the reduced situation
of the basic coalitions of the submarket. The valuation of such a basic coalition is
obtained by allowing it to cooperate only with agents that have left but with whom
it can form a basic coalition of the initial market. In particular, when E = {i, j, k}
withi € Sy, j € S and k € S, then 05*({i, j, k}) = v({i, j, k}). Thus, the worth
wys.x (R) in the derived game for any coalition R € § is obtained from the valuations
5% of the basic coalitions in B% by imposing superadditivity. Hence, the derived
assignment game is always a superadditive game.

Notice that in (2) different basic coalitions E in the same matching u € M(M; N
R, M> N R, M3 N R) can use the same coalition Q C N\S to establish their value
0S¥ (E). Thus, (S, w);S,x) is not a game in the ordinary sense; it serves only to deter-
mine the distribution of wys.«(S) among the members of S. Also in the Davis and
Maschler reduced game the expectations of different disjoint subcoalitions may not
be compatible with each other, because they may require cooperation of the same
subset of N\S.

However, it is interesting to remark that the worth of the grand coalition of the
derived game (at a core allocation) is indeed attainable. The reason is there exists
an optimal matching of the derived game such that no two basic coalitions of this
matching need the cooperation of a same outside agent to attain their worth. We will
argue this fact in Remark 1, below the proof of Theorem 1.

A market with some empty sector is a two-sided market (with individual reservation
values) and the definition of derived game coincides with the one given by Owen (1992)
for these markets.

Given a game (N, w), its superadditive cover is the minimal superadditive game
(N, w) such that w > w. Next proposition extends a result obtained for two-sided
assignment games by Owen (1992). We show that for any generalized three-sided
assignment game (N, wy, ), its derived game (S, wys.x) at any coalition § and core allo-
cation x is the superadditive cover of the corresponding Davis and Maschler reduced
game (S, wg **). This means that the derived game of a generalized three-sided assign-
ment market is closely related to the Davis and Maschler reduced game. The proof is
consigned to the “Appendix”.

Proposition 2 Let y = (M, M, M3; v) be a generalized three-sided assignment
market, N = My U M U M3, (N, w,) the associated generalized three-sided game
and x € C(y). Then for any § # S C N, the derived game (S, wys.c), where
;75”‘ =M NS, MaNS, M3N S; 05Y), is the superadditive cover of the Davis and
Maschler reduced game (S, wﬁ*").

Our objective now is to introduce a consistency property with respect to the derived
market. We name this property derived consistency.

Before doing that, we need to introduce the notion of solution in the class of gener-
alized three-sided assignment markets or games. Next definition extends to our setting
the notion of feasibility that is usual in two-sided assignment markets.

Definition 4 Given a generalized three-sided assignment market y = (M, M>,
M3 v), an allocation x € RMt x RM2 x RM5 is feasible-by-matching if there exists
a matching u € M(My, M>, M3) such that for all £ € u, x(E) = v(E).
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582 A. Atay et al.

In that case, we say that x and p are compatible. Notice that a matching u compatible
with x may not be optimal. Moreover, the set of feasible-by-matching allocations
is always non-empty since we can take the matching u = {{i}};cy and then x =
(v({i}))ien is feasible with respect to p.

Definition 5 A solution on a class I' € I3_gaM is a correspondence o that assigns
a subset of feasible-by-matching payoff vectors to each y € I'.

Given y € I', we write o (y) to denote the subset of feasible-by-matching payoff
vectors assigned by solution ¢ to the assignment market y. Notice that a solution o
is allowed to be empty. The core correspondence and the mapping that gives to each
agent his/her individual value (compatible with the matching formed by all individual
coalitions) are examples of solutions on the class of generalized three-sided assignment
markets. Similarly, the nucleolus, which will be defined below, is a solution on the
subclass of balanced generalized three-sided assignment markets.

Definition 6 A solution o on the class of generalized three-sided assignment markets
satisfies derived consistency if for all y = (M1, M, M3;v), all @ # S C N and all
x € o(y), itholds x5 € o (P5).

Next theorem shows that the core satisfies derived consistency on the domain of
generalized three-sided assignment markets.

Theorem 1 On the domain of generalized three-sided assignment markets, the core
satisfies derived consistency.

Proof Lety = (M1, M>, M3; v) be a generalized three-sided assignment market, let
x be a core allocation and ¥ # S C M| U M> U M3. To simplify notation, let us write
=05 and W = WS

Consider all possible basic coalitions in B5. First, for all {i, j,k} € M; N S x
M, NS x M3NS, xi +x; +x > v({i, j,k}) = v({i, j, k}). Secondly, for all
{i,jleMiNS) x(MxNS), x; +x; >v{i, j}) and x; +x; > v({i, j, k}) — x¢ for
allk € M3\S. Hence, x; +x; > 0({i, j}). Finally, foralli € M1 NS, x; > v({i}), and
xi = v({i, j}) —xj forall j € M>\S, and x; > v({i, k}) — x; for all k € M3\S, and
x; > v({i, j, k}) —x; —xi forall j € Mp\S and forall k € M3\S. Hence, x; > 0({i}).

Proceeding similarly for the remaining E € B%, we obtain
x(E) > 0(E) forall E e BS. (3)

Finally, it remains to show that x (S) = w(S). Expression (3) implies x (R) > w(R)
for all R € S. Now, applying Proposition 2 we obtain

x(8) = W(S) = wi™(S) = x(S),
where the second inequality follows from Proposition 2 and the last equality from

the Davis and Maschler reduced game property of the core (see Peleg 1986). Thus,
x(8) = W(S) and this completes the proof of x|5 € C(pS™). O
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As a consequence of the proof of the above theorem, we can justify, by means of the
following remark, that the worth of the grand coalition of the derived game is indeed
attainable.

Remark 1 An optimal matching of the derived market at a core allocation is induced
by an optimal matching of the initial market. To see that, take y = (M1, M2, M3; v)
a balanced generalized three-sided assignment market and @ an optimal matching,
€ M, (My, My, M3). Let p5°* = (M; NS, M, NS, M3 N S; 55°) be the derived
marketat S € M UM UMz andx € C(y). Itturns out that s ={ENS | E € u}
is optimal for 75 Indeed, given any other ' € M)}S,x MiNS, M,yNS, M3NS),

D NE) = D x(E)=x(S)= D x(E)
Eeu' Eew Eeps
= D v(DE) —x(D(ENE) = " 03*(E),
Eeps Eepys

where the first inequality follows from (3); for all E € s, D(E) is defined as the
unique basic coalition in u such that D(E) NS = E; and the last inequality follows
from (1). Hence, s is optimal for )?S’x. Because of that, no two basic coalitions of
w|s need the cooperation of the same outside agent to attain their worth.

To finish this section, we show another solution concept that satisfies derived con-
sistency. The nucleolus is a well-known single-valued solution for coalitional games
introduced by Schmeidler (1969). When the game is balanced, the nucleolus is the
unique core allocation that lexicographically minimizes the vector of decreasingly
ordered excesses of coalitions.”

The nucleolus of a generalized three-sided assignment markety = (M1, M, M3; v)
is the nucleolus of the associated assignment game (N, w,, ), and it will be denoted
by n(y). Next, we show that when a generalized three-sided assignment market is
balanced the nucleolus also satisfies derived consistency.

Theorem 2 On the class of balanced generalized three-sided assignment markets, the
nucleolus satisfies derived consistency.

Proof Let y = (M1, My, M3; v) be a balanced generalized three-sided assignment
market, 7(y) = n be the nucleolus and ¥ # S C M7 U M U M3. Since the nucleolus
satisfies the Davis and Maschler reduced game property (Potters 1991), s = n (w;f’ )
which implies n(S) = wg’"(S). On the other hand, since n € C(y), by Theorem 1
we know that |5 € C(w);s,n) which implies n(S§) = u)};s.n(S). Hence, taking into
account Proposition 2, we have that the Davis and Maschler reduced game (S, wg’")
and its superadditive cover have the same efficiency level, which implies (Miquel and
Nufiez 2011) that both games have the same nucleolus. Therefore, njs = n(wys.g). 0

In the next section, we combine derived consistency with two additional properties
in order to characterize the core of generalized three-sided assignment games.

2 Givena game (N, r), the excess of a coalition S € N at a payoff vector x € RN is r(S) — Dies Xi-
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4 An axiomatic characterization of the core

In this section, we give an axiomatic characterization of the core on the class of
generalized three-sided assignment markets making use of derived consistency and
two additional properties, singleness best and individual anti-monotonicity, that are
introduced in the sequel.

Definition 7 A solution o on I" C [3_gawm satisfies singleness best if for all y =
(M1, M>, M3; v) € I', it holds that whenever the partition in singletons is optimal in
v, then (v({i}))ien € o (¥).

Singleness best simply says that if the partition in individual coalitions is optimal,
then the vector of individual values should be an outcome of the solution. This axiom
has some resemblance with the zero inessential game property of Hwang and Sud-
holter (2001) in the sense that it is a non-emptiness axiom for generalized three-sided
assignment games that are trivial or inessential.

Before introducing the property of individual anti-monotonicity, we need to estab-
lish how to compare the individual values of all agents across different games.

Given two payoff vectors x = (xj)ien, ¥’ = (x})jen in RN and u €
M(My, M3, M3), we write x >, x when x; = x/ for all {i} € p and x/ > x; if
{i} ¢ . That is, x’ is greater than x with respect to ;« when agents that are matched
with some other partner receive at least as much in x” than in x, while agents that are
alone receive the same payoff in both allocations.

Definition 8 A solution o on I C I3_gawm satisfies individual anti-monotonicity if
forall Y/ = (M, My, M3;v') € T',all y = (M, My, M3;v) € T',allu € o(y')
and matching  compatible with u, if v(E) = v/(E) for all E € B with |E| > 1 and
W' {iN)ien =u (({i})ien, then it holds u € o (y).

Individual anti-monotonicity says that if the individual values decrease (in the sense
defined above) any payoff vector in the solution of the original market should remain
in the solution of the new market. Notice that the value of pairs and triplets coincide in
both markets. Individual anti-monotonicity is a weaker version of anti-monotonicity
introduced by Keiding (1986) and also used by Toda (2003).

Now, we characterize the core on the class of generalized three-sided assign-
ment games by means of derived consistency, singleness best and individual
anti-monotonicity.

Theorem 3 On the domain of generalized three-sided assignment markets, the core
is the unique solution that satisfies derived consistency, singleness best and individual
anti-monotonicity.

Proof By Theorem 1 we know the core satisfies derived consistency. It is straight-
forward that the core satisfies singleness best and individual anti-monotonicity.
Assume now that o is a solution on I3_gam also satisfying these axioms. Take any
y = (M1, M, M3; v) € I3_GaM.

We first show that o (y) € C(y). Take x € o (y). We need to show that x satisfies
coalitional rationality and efficiency. Notice that if some side of the market is empty,
the game is a two-sided assignment market and the statement follows from Proposition
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2 in Llerena et al. (2015). So, we can assume without loss of generality that M; #= @
for all [ € {1, 2,3}. Then, for all i € M; U M, U M3 consider the derived market
relative to S = {i} at x. By derived consistency of o, x; € o (p111-¥). Moreover,
feasibility-by-matching of o implies that x; = d!}*({i}). Now, let E € B be any
basic coalition such that i € E. By definition of derived market at {i} and x we have
xi = 0l ({i}) > v(E) — > k(i) Xk Hence, 37 p xx > v(E) which states that x
satisfies coalitional rationality.

In order to prove efficiency, let u be an optimal matching and u’ be a match-
ing compatible with x. Then, w, (N) = ZEGM v(E) < ZEEM(ZieE X)) =
D kepw Qlicp Xi) = 2 e, V(E), where the last equality follows from the fact that
w' is compatible with x. Since 1 is optimal and wy, (N) < > . w V(E), we get that uw
is also optimal and x is efficient. Hence, x € C(y) and we have proved o (y) € C(y).

To show that C(y) C o(y), takeu € C(y) and u € M (M1, M, M3) compatible
with u. Then, u is optimal for y. Now, define a market y' = (M1, My, M3; v") where
V' (E) =v(E) forall E € Bsuchthat |[E| > 1and v/(E) = u; for all E = {i}. Notice
that v'({i}) = u; = v({i}) for all {i} € p and v'({i}) = u; > v({i}) for all {i} ¢ w.
Hence, (v'({i})ien >, (v({i}))ien. Let us see that ' = {{i} | i € N} is optimal for
y’. To this end, take any matching u” € M(M;, M, M3). Then,

SVE) =D VAN =D = Y > uit >, D u

Eeu ieN ieN Eep' icE Eeu' icE
|E|>1 |El=1
= D VE+ D VE) = D VE.
EEM” EE,LL” EEMN
|E|>1 |E|=1

The inequality follows from the fact that u € C(y) and the relationship between v and
v'. Thus, p is optimal for y'. By singleness best, u = (u;)jen = (V'({i}))ien € o (¥')
and then, by individual anti-monotonicity, u € o (y). Hence, C(y) € o(y). Together
with the reverse inclusion, o (y) € C(y), we conclude that C(y) = o (y). O

We now show that no axiom in the above characterization is implied by the others.
To this end, we introduce different solutions satisfying all axioms but one.

Example 4 For all y = (M1, Ma, M3; v) € I'3_gaM, let us consider

oi(y) =0.
Clearly, o satisfies derived consistency and individual anti-monotonicity but not sin-
gleness best.
Example 5 For all y = (M1, M3, M3; v) € [3_gawm, Write N = M1 U My U M3 and

let us consider

u is feasible — by — matching for y,
or(y)=dueRY |u; > wy({i}), foralli e N,
u(N) = wy(N)
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Notice thatif u € o2(y), every matching p that is compatible with u is optimal. It can
be easily checked that o, satisfies singleness best and individual anti-monotonicity,
but since o, is different from the core, the characterization of the core in Theorem 3
implies that o does not satisfy derived consistency.

Example 6 For all y = (M, My, M3; v) € I’3_gawm, let n(y) be the nucleolus of y
and consider

0 if C(y) =4,

o3(y) = .
[{n(y)} it C(y) # 0.

The solution o3 satisfies singleness best and derived consistency (see Theorem 2),

but since o3 is different from the core, the characterization of the core in Theorem 3

implies that o3 does not satisfy individual anti-monotonicity.

These three examples prove that none of the axioms is redundant in the above
characterization of the core.

5 Core and competitive equilibria

We now focus on the particular case where M| = {1,...,m}and My = {l', ..., m'}
are two sets of sellers, each selling an indivisible good. Goods of sellers in M are of a
different type of those of sellers in M». The third sector M3 = {1”, ..., m"} is formed
by buyers, each interested in buying at most one unit of each type of good. Each seller
r € M1 U M> has a reservation value ¢, > 0 for his object, meaning he will not sell
for a price lower than that. We denote by c the vector of sellers’ reservation values.
We denote by B¥, the set of basic coalitions that contain buyer k € M3, BX = {E €
B | k € E}. Then, each buyer k € M3 places a value w*(E) € R, on each basic
coalition E € B¥ and we denote by w = (wk )kem; the vector of buyers’ valuations.
All these valuations (w, c) give rise to a generalized three-sided assignment market
(M1, M, M3; v™°), where v (E) = w*(E)—c(E\{k}) if E € B forsome k € M3
and v “(E) = 0if E € B with E N M3 = (. We denote by I'ssp this subclass of
generalized three-sided assignment markets that are defined by some valuations (w, c).
We want to show that each core allocation is the result of trading goods following an
optimal matching and according to some prices. To introduce the notion of competitive
price vector, some previous definitions are needed.
Given a generalized three-sided assignment market y = (M, Ma, M3; v""¢) €
I'ssp, a feasible price vector is p € RT‘UMZ such that p, > ¢, forallr € My U M.
Next, for each feasible price vector p € RTIUMZ we introduce the demand set of
each buyer in sector M3.

Definition 9 Given a market y = (M1, M), M3; v""¢) € IssB, the demand set of a
buyer k € M3 at a feasible price vector p € RTIUMz is

Di(p) = (E € BY | w"(E) — p(E\{k}) > w*(E") — p(E"\{k}) forall E' € B}.
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Note that D (p) describes the set of basic coalitions containing buyer k that max-
imize the net valuation of buyer k at prices p. Notice also that the demand set of a
buyer k € M3 is always non-empty. If u € M(M{, M>, M3), for all k € M3 we will
write (k) to denote the basic coalition E such thatk € E € .

Given amatching u € M(My, M, M3), we say asellerr € M{UM, is unassigned
(by ) if there is no k € M3 such that r € (k)

Now, we can introduce the notion of competitive equilibrium for our market.

Definition 10 Given a market y = (M1, My, M3; v*>°) € IssB, a pair (p, u), where
p € RT‘UMZ is a feasible price vector and u € M(My, M2, M3), is a competitive
equilibrium if

(i) for all buyer k € M3, u(k) € Di(p),
(i) for all seller r € M| U M>, if r is unassigned by u, then p, = ¢;.

If a pair (p, u) is a competitive equilibrium, then we say that the price vector
p is a competitive equilibrium price vector. The corresponding payoff vector for a
given pair (p, @) is called competitive equilibrium payoff vector. This payoff vector
is (x(p, ), y(p, w), 2(p, w) € RM x RM2 »x RM5, defined by

xi(p, ) = pi —c¢; forallsellersi € My,
vi(p,u) =pj—cj forallsellers j € M>,

2 (p, 1) = wh (k) — p(u)\{k}) for all buyers k € Ms.

We denote the set of competitive equilibrium payoff vectors of market y by CE(y).

We now study the relationship between the core of the market y = (M, M3,
M3; v?¢) € I'ssp and the set of competitive equilibrium payoff vectors. First, we
need to point out that if a matching p constitutes a competitive equilibrium with a
feasible price vector p, then w is an optimal matching. The proof is consigned to the
“Appendix”.

Lemma 1 Given a market y = (M, My, M3; v”"¢) € Issg, if a pair (p, ) is a
competitive equilibrium, then | is an optimal matching.

Now, we can give the main result in this section.

Theorem 4 Given a markety = (M, My, M3; v°¢) € I'ssB, the core of the market,
C(y), coincides with the set of competitive equilibrium payoff vectors, CE(y).

Proof First, we show that if (p, u) is a competitive equilibrium, then its corre-
sponding competitive equilibrium payoff vector X = (x(p, u), y(p, n), z(p, n)) €
CE(y) is a core element. Recall from its definition that x;(p,u) = p; —
ciforalli € My, y;j(p, ) = pj —cj forall j € My and zx(p, w) = wk(uk)) —
p(u(k)\{k}) forall k € Ms3. Let us check that for all basic coalitions E € B it
holds X (E) > v"“(E). Notice that if E does not contain any buyer k € M3, then
v"-¢(E) = 0 and hence the core inequality holds. Otherwise, take £ € B such that
k € E for some k € M3. Then,
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X(E) = p(E\{k}) — c(E\{k}) + w* (1 (k) — p(u(k)\{k})
> p(E\{k}) — c(E\[k}) + wX(E) — p(E\{k})
= wh(E) — c(E\{k}) = v °(E),

where the inequality follows from the fact that (p, u) is a competitive equilibrium. It
remains to check that X is efficient. Since u is a partition of N = M1 U My U M3, we
get

XV = 3 ka0 — prNKD] + p(My U My) — (M1 U My)
keMs

= > k() = put\KD + pu\KD — c(u\ kD]

keMs

+ D> (o)
¢ J uk
keM3
= > [w(uk) — c(u\ k)]

keMs

= D ) = D v"(E),

keMs Een

where the third equality holds since p; = ¢; for unassigned objects /.

We have shown that if (p, n) is a competitive equilibrium, then its competitive
equilibrium payoff vector X is a core allocation.

Next, we show that the reverse implication holds. That is, if X € RY is a core
allocation, then it is the payoff vector related to a competitive equilibrium (p, ©),
where p is any optimal matching and p is a competitive equilibrium price vector.

Let us define p € RM' x RM2 by p; = X; + ¢ for all [ € My U M. Notice
first that since X € C(y), if an object [ € M; U M5 is unassigned by the matching
W, then p; = X; 4+ ¢; = ¢;. Moreover, X (u(k)) = v “(u(k)) for all k € M3 and
X(E') = v ¢(E’) for all E' € B* where k € Mj3. Then, for all k € M3 and all
E' € B,

wh (k) — p(O\KD) = v (n(k) + c(rlO\{k}) — p()\{k})
= X (u(k)) + c(u\{k}) — p(r\{k})
= Xk
> v (E") — X (E'\{k})
= v (E") — [p(E'\{k}) — c(E'\{k})]
= wh(E') — p(E"\{k})

where the inequality follows from the fact that X € C(y). This shows that u(k) €
Dy (p) which concludes the proof. O
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Once shown that on the class of generalized three-sided assignment markets the
set of competitive equilibrium payoff vectors, CE(y), coincides with the core of the
market, C(y), we have that competitive equilibria exist for this model if and only if
the core is non-empty.>

Notice to conclude that the class I'ssp contains all classical three-sided assignment
markets as defined in Kaneko and Wooders (1982) or Quint (1991a,b). Indeed, the
class I'ssp is characterized by two facts: (a) individual values are null, v({i}) = O for
all seller i € My U M; and (b) any pair of sellers is also valued at zero, v({i, j}) =0
ifi € My and j € M>. Now, if we have any classical three-sided assignment market
defined by a three-dimensional matrix A = (a;jk),j k)eM; xM>xMs» Simply define
¢i =0foralli € My,c; =0forall j € M, and, for all k € M3, wk({i, J. kY = aijk
forall (i, j) € My x My, w*({i, k}) = Oforalli € My, wk({j, k}) = Oforall j € M5.
This defines a market in I'ssg.

Since I'ssp contains all classical three-sided assignment markets, balancedness is
not guaranteed in this class.
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Appendix

Proof of Proposition 2. Let us write » = wys... We have to show that o is superad-
ditive, w > w;f’x and w is minimal with these two properties.

By definition, w is superadditive. Now, we show that w(7) > wf’x(T) for all
T C S. Notice that, for all T C § there exists Q € N\S such that

wiH(T) = wy (T U Q) — D x. €
leQ

Let o be a matching on 7' U Q such that w, (T U Q) = ZEEM v(E). We introduce

the following partition of the set of basic coalitions in x:
L={ijklenl|liel,jeT, keT}
L=i,jklenli¢gT, j¢T k¢gT}
L={{i,j,klenl|liel,jeT, k¢T}
L={{i,jkleulieTl,j¢T k¢T}
Is={{i,jlenlieT, jeT}
Ie={{i,jlenli¢T, j¢T}
L={{i,jlenlieT, j¢T}
Ig={{itenlieT}
lo={{i}enligT}.

3 See Quint (1991a) for a characterization of the non-emptiness of the core of games in partition form in
terms of the solutions of the linear program that provides an optimal matching.
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We write w,, (T U Q) in terms of the above partition.

w,(TUQ) = > wli.j.kh+ D vlli.j.kD+ > vl j.k)

{i,).k}el {i,).k}eh {i,).k}els

+ > vl k4 D vl i+ D v, b

{i.j.k}ely {i.j}els {i.j}els
+ O vl jh+ DL vdih+ D] vdih. )

{i,jtely {itels {itely

Then, substitute (5) in Eq. (4) and distribute 1e@ X1 among the sets of the partition.

w3 (T) = wy (T U Q) — in

ieQ
= > i kh+ D v({ijkD) —xi —xj—x
{i.j.kYely {i.j.k}el
+ > vl k) x> (i k) —xj - x
{i.j.kel3 {i,j.k}els
+ > vl jh+ D v i) —xi—xi+ D v({i. i) —x;
{i.j}els {i.j}els {i.jtel
+ D v{ih+ D vdih — xi.
{itely {itely

Since x € C(y), the second, the sixth and the last term are non-positive.
Let us consider o = 05* (see Definition 3). For all 7, r, s € {1, 2, 3} such that
r#s,r#t,s AZtandalli e M\, NT,je M;NT,

o(fi, jh = (X {v({i, j. kD) — 2, v({i, jH}

As a consequence, for all {i, j, k} € Is, v({i, j, k}) — xx < 0({i, j}) and for all
{i, j} e Is,v({i, j}) < 0({i, j}).

Also, forallt € {1,2,3}andl € M, N T, if r, s are such that r # s, s # t and
t # r, then,

v({l}) = .Emag](Q{v({i, B0 —xi —xj,v({i, 1) — xi,v({j, I}) — xj, v({{PD}.
JeM.n0

As a consequence, for all {7, j, k} € Iy, v({i, j, k}) — x; —xx < v({i}); for all
{i, j} € I, v({i, j}) — x; < 0({i}) and trivially v({i}) < 0({}) for all {i} € Is.
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To sum up, taking into account that w is superadditive by definition,

wiN Ty < D> i g kD + YL b D+ D b)) < B(T).

{i,j,k}el {i,j.k}elz {i,j.k}els
{i,jlels {i,jlel7
{itels

Now, we only need to show that w is the minimal superadditive game satisfying
the above inequality. First, consider {k} € B5. Then,

wy ({k}) = Jnax fwy (k}U Q) - x(0)}
> max {wy (k}U Q) - x(0)}
{kjuQeB
= gmax {v({k} U Q) — x(0)}
{kJuQeB
= O({k}). (©)
Similarly, we obtain
wy i, j} = d({i. j}) forall (i, j} € B, (7)
wy* ({i, j.k}) = 0({i. j.k}) forall {i, j. k} € B®. ®)

Assume now (N, w) is superadditive and w > wjf’x. Forall T C S, let u be an

optimal matching for ?I‘;’X. Then,

wl) = D wli, k) + D wdi, jh+ D wik})

{i,j.k}en {i,jlen {k}eun
> > wSt kD 4+ DL wit LD+ D wit (kD)
{i,j.k}en {i,jlen {kYeu
> D 0L g kD + D i ih+ D Dk
{i.j.klen {i,jlen {klep
= W(T),

where the last inequality follows from (6) to (8).
This shows that w is the minimal superadditive game such that w > wg’x, which

implies that w is the superadditive cover of u)f’x . O
Proof of Lemma 1. In order to see this, we need to show that if (p, i) is a compet-

itive equilibrium, then the matching p is a partition of maximal value. Consider a
competitive equilibrium (p, 1) and another matching u’ € M(My, M, M3). Then,
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D vUE) = D0 wh(u) — e(u\ (k)

Een keM3
= > Wk () — e\ kD) — p(/ O\KD + p(o\(k))
keM3
= > wh @ ) — cuNKY — p | | w'k0\Ms
keM3 keMs3

+p ( U M(k)\Ma)

keMs

= Z wh (W' (k) — ¢ M(k)\Ma
keMs

keMs

- ( ( U w@n U M(k)> \M3)

+p (( U oo\ U w (k)) \M3
keMs keMs

= Z wh (/' (k) — ¢ M(k)\M3
keMs

keMs

(( RO M(k)) \M3>

U wooN U w0 | \M;
keMs keMs

= > k)

keM3

( M’(k)\M3> —c (( U N U /L/(k)> \Ms)
keM; keMs keM;

(( p\ |J w0 \M3)
keM3 keMs3

> > wku' () - C(M(k)\{k})= VED,

keMs

where the first inequality follows from the definition of the demand set and
the fact that (p, ) is a competitive equilibrium: wh(uk) = wk/ (k) —
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p( (\{k}) + p(u(k)\{k}). The fourth equality follows from the fact that for all
| e (UkeM3 w (k)\ UkeM3 w(k)\M3, p; = c;, and the last inequality follows from
the feasibility of the price vector p. O
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