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This paper takes a game theoretical approach to open shop scheduling problems to minimize the sum 

of completion times. We assume that there is an initial schedule to process the jobs (consisting of a 

number of operations) on the machines and that each job is owned by a different player. Thus, we can 

associate a cooperative TU-game to any open shop scheduling problem, assigning to each coalition the 

maximal cost savings it can obtain through admissible rearrangements of jobs’ operations. A number of 

different approaches to admissible schedules for a coalition are introduced and, in the main result of 

the paper, a core allocation rule is provided for games arising from unit (execution times and weights) 

open shop scheduling problems for the most of these approaches. To sharpen the bounds of the set of 

open shop scheduling problems that result in games that are balanced, we provide two counterexamples: 

one for general open shop problems and another for further relaxations of the definition of admissible 

rearrangements for a coalition. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In a scheduling problem a set of jobs have to be executed by 

 number of machines. Such a general formulation arises in many 

eal life situations, like manufacturing processes, computer science, 

ogistics, etc. In this paper we consider open shop scheduling prob- 

ems introduced by Gonzalez and Sahni (1976) in which n jobs con- 

isting of m operations have to be processed on m machines, each 

peration on a different machine. We do not allow preemptions, 

he order in which the jobs’ operations are processed is immaterial 

ut two operations of the same job cannot be processed simulta- 

eously (for a survey see Chapter 8 in Pinedo, 2012 or Chapter 6 

n Leung, 2004 ). 

In this paper we additionally assume that there is an initial 

chedule (“first come, first served” for instance) to process the jobs’ 

perations on the machines and that each job is owned by a dif- 

erent player. Moreover, for any admissible schedule, each player 

ncurs some waiting cost until all her job’s operations has been 

rocessed and she can leave the system. Concretely, each player’s 

ost is assumed to be a weight of the completion time of her 

ob. Thus, we can take a game theoretical approach to address 

he question on how to distribute the cost savings the players can 
∗ Corresponding author. 
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btain by cooperation, whenever they rearrange their jobs to be 

rocessed in an optimal way, minimizing total weighted com- 

letion times. The computational complexity of finding opti- 

al schedules for open shop problems to minimize the sum of 

eighted completion times has been well-established in the lit- 

rature since Achugbue and Chin (1982) . However, Adiri and Amit 

1984) provide two neat algorithms to obtain optimal schedules for 

nit open shop scheduling problems, where all processing times 

f all operations are equal as well as all players’ weights for their 

ompletion times. 

Curiel, Pederzoli, and Tijs (1989) are the first to study one- 

achine situations with weighted completion time as the cost- 

riterion from such game theoretical point of view. Other multiple 

achine problems have been studied from this perspective as par- 

llel machines ( Hamers, Klijn, & Suijs, 1999; Calleja, Borm, Hamers, 

lijn, & Slikker, 2002 ) or flow shop problems ( van den Nouweland, 

rabbenborg, & Potters, 1992; Estévez-Fernández, Mosquera, Borm, 

 Hamers, 2008 ). Curiel, Hamers, and Klijn (2002) provide an ex- 

ensive review of scheduling problems that have been treated from 

his point of view. 

In case of cooperation, and in order to obtain stable allocations 

f the total cost savings, where no coalition of players receives 

ess that the cost savings it can generate by itself, we need to 

etermine first what rearrangements of their jobs’ operations are 

llowed for the coalition. An accepted and broadly used defini- 

ion of admissible rearrangement for a coalition ( Curiel et al., 

989 ) imposes that the set of predecessors of a player not in the 

https://doi.org/10.1016/j.ejor.2021.02.030
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oalition on a machine should be the same as initially. For open 

hop problems, and due to the fact that machines may incur idle 

ime, such condition is not sufficiently strong to protect players 

utside the coalition of being hurt. This forces us to think of 

dditional conditions on what should be admissible for a coalition. 

t this point, and inspired by Curiel, Prasad, Tijs, and Veltman 

1993) , we use two different types of requisites. On one hand, 

e establish conditions guaranteeing that waiting costs of players 

utside the coalition do not increase by preventing either the 

tarting time of the operations of jobs outside the coalition or 

he completion time of such jobs to increase. On the other hand, 

e study requisites that take into account the position of the 

perations in the queue on each machine. Here, we tolerate that 

he set of predecessors of players not in the coalition is contained 

n, rather than equal to, the initial set of predecessors; or similarly, 

he position in the queue for players outside the coalition does not 

hange (does not increase). It is worth to point out that all these 

elaxations of the first condition on the set of predecessors allow 

or the operations of jobs in a coalition to jump over operations 

f jobs not belonging to the coalition. Combining these different 

ypes of conditions, in total we consider nineteen definitions of 

dmissible rearrangements for a coalition. 

For one machine scheduling problems, Curiel et al. (1989) pro- 

ide a constructive proof of the existence of stable allocations, by 

roposing an allocation rule in the core of the associated game, 

or the first of the definitions. Slikker (2006) shows the existence 

f stable allocations indirectly for another four of the approaches. 

an Velzen and Hamers (2003) and Musegaas, Borm, and Quant 

2015) study the existence of core elements considering slightly 

ifferent definitions of admissibility. In the main result of the pa- 

er, we provide a stable allocation rule of the total cost savings 

btained by cooperation for unit open shop scheduling problems 

nd for all but three of the definitions we propose of admissible 

chedules for a coalition. Unfortunately, except for balancedness, 

he games do not present any further structure as convexity or 

− component additivity, classes of games widely studied in the 

iterature of scheduling games. For the other three definitions of 

dmissible rearrangements we provide a counterexample to show 

hat stable allocations may not exist. Moreover, the core of the as- 

ociated games might be empty for general open shop problems 

or the most of the proposed approaches to admissible rearrange- 

ents. 

The rest of the paper is organized as follows. In Section 2 , we

ntroduce open shop scheduling problems and present some op- 

imal schedules for unit open shop problems when considering 

he weighted completion time criterion. Section 3 introduces the 

oalitional game associated with an open shop scheduling problem 

ith initial schedule and discusses which rearrangements should 

e admissible for a coalition. In Section 4 , we show our main re-

ult, that is the core of a unit open shop scheduling game is non-

mpty for a wide set of definitions of admissible rearrangements 

or a coalition. We additionally show that such games neither need 

o be convex nor σ− component additive. Finally, in Section 5 , we 

tudy to what extend balancedness still holds when we consider 

eneral open shop problems. 

. Open shop scheduling problems 

An open shop scheduling problem consists of n jobs, N = 

 1 , . . . , n } , each of them consisting of m operations, each one to

e processed on a different machine, being M = { 1 , 2 , . . . , m } the

et of machines. When no confusion arises we denote by | N| = n 

he cardinality of the set of jobs and by | M| = m the cardinality of

he set of machines. Alternatively, we can think of a set of players, 

ny of them needing to finish a job that consists of m operations, 
13 
ach of these operations to be processed on a different machine. 

layers and jobs are used interchangeably throughout this paper. 

The operation of job i ∈ N on machine j ∈ M is denoted by the 

air (i, j) , p 
j 
i 
> 0 denotes the processing time of (i, j) , and by

p := 

(
p 

j 
i 

)
i ∈ N, j∈ M 

we denote the matrix of processing times. We 

ssume that all operations have to be processed uninterrupted, 

hat is, preemptions are not allowed. Moreover, in an open shop 

cheduling problem the process order of a job’s operations is im- 

aterial, but two operations of the same job cannot be processed 

imultaneously. Also, a machine cannot process more than one job 

t a time. 

A schedule is a mapping s : N × M → R + that assigns to every

peration a starting time. The set of all feasible schedules, accord- 

ng to the open shop specifications, is denoted by S . Let s ∈ S, 

 (i, j) denotes the starting time of operation (i, j) according to 

he schedule s . Since no preemption is allowed, C 
j 
i 
(s ) = s (i, j) + p 

j 
i 

s the completion time of the operation (i, j) according to s . We 

enote the completion time of job i according to s by C i (s ) =
ax 

j∈ M 

C 
j 
i 
(s ) . 

A scheme σ = (σ j ) j∈ M 

is a collection of m bijections, σ j : N → 

 1 , . . . , n } , one for each machine j ∈ M, where σ j (i ) = k interprets

he operation of job (player) i on machine j is at position k accord- 

ng to scheme σ . In other words, player i has the right to process 

er operation on machine j before her n − k followers according 

o σ j . The set of all possible schemes is denoted by �. A feasible

chedule s ∈ S is compatible with the scheme σ ∈ � if and only if 

or all j ∈ M and i, i ′ ∈ N it holds 

 (i, j) < s (i ′ , j) ⇐⇒ σ j (i ) < σ j (i ′ ) . 
In the next example, we illustrate that a given scheme σ ∈ �

dmits a number of different compatible feasible schedules. On 

he other hand, a given schedule s ∈ S is clearly compatible with 

 unique scheme. 

xample 1. Consider the open shop scheduling problem with N = 

 1 , 2 } , M = { 1 , 2 } , p 
j 
i 
= 1 for all i ∈ N and all j ∈ M, and consider

he scheme σ 1 = σ 2 = (1 , 2) . Then, σ admits, among others, the 

ollowing two feasible schedules s 1 and s 2 : 

m 1 1 2 s 1 , 
m 2 1 2 

m 1 1 2 s 2 . 
m 2 1 2 

In the first schedule machine 2 incurs idle time, while in the 

econd schedule machine 1 incurs idle time. 

A semi-active schedule is such that there does not exist an oper- 

tion which could be started earlier without altering the process- 

ng scheme or violating the restrictions on the processing of oper- 

tions, according to the open shop specifications. So, all machines 

tart processing all operations as soon as it is possible without vio- 

ating the fact that two operations of the same job cannot be pro- 

essed at the same time. In Example 1 , there are no more semi-

ctive schedules than s 1 and s 2 . Observe that there is no one-to- 

ne correspondence between schemes and semi-active schedules 

or open shop problems. 

Every job (player) i ∈ N has a waiting cost that is linear with re- 

pect to the moment it can leave the system, i.e. the cost function 

f a job i ∈ N for a given s ∈ S is of type c i (s ) = αi C i (s ) where αi >

 is the weight or waiting cost per unit time of player i . By α :=
 

αi ) i ∈ N we refer to the vector of weights. An open shop schedul- 

ng problem with these specifications is a 4 −tuple (M, N, p, α) . Our

rst aim is to find an optimal schedule s ∗ ∈ S that minimizes the 

eighted sum of completion times. Note that since the waiting 
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osts are non-decreasing with respect to the completion time for 

ll i ∈ N, then, we only need to look at semi-active schedules. 

Finding optimal schedules for such open shop situations is 

 difficult computational problem and has been proved to be 

P-hard even if there are only two machines (see for instance 

chugbue & Chin, 1982 ). Thus, we will pay special attention to unit 

pen shop problems. In a unit open shop problem, p 
j 
i 
= p for all 

 ∈ N and all j ∈ M, and αi = α for all i ∈ N. Without loss of gener-

lity we assume that p 
j 
i 
= 1 for all i ∈ N and all j ∈ M, and αi = 1

or all i ∈ N. A unit open shop scheduling problem is a pair (N, M) .

Adiri and Amit (1984) provide two different optimal schedules 

or unit open shop problems minimizing the weighted sum of 

ompletion times. For our purpose, here we introduce one of them 

s Algorithm 2 (Algorithm 1 in Adiri & Amit (1984) : 

lgorithm 2. 

Next, we provide a unit open shop scheduling problem with six 

layers and four machines to illustrate Algorithm 2 . 

xample 3. Consider (N, M) with N = { 1 , 2 , 3 , 4 , 5 , 6 } and M =
 1 , 2 , 3 , 4 } . Then, an optimal schedule s ∗ ∈ S according to

lgorithm 2 is: 

m 1 1 4 3 2 5 6 

m 2 2 1 4 3 6 5 

m 3 3 2 1 4 6 5 

m 4 4 3 2 1 6 5 

which is only compatible with the associated scheme σ : 

σ 1 1 4 3 2 5 6 

σ 2 2 1 4 3 6 5 

σ 3 3 2 1 4 6 5 

σ 4 4 3 2 1 6 5 

As noted in Adiri and Amit (1984) , if n = mk + l with k = � n m 

	
nd l ≥ 0 , this algorithm constructs k compact blocks where ma- 

hines do not stop between operations. In block 1 ≤ r ≤ k, m jobs 

tart processing at time (r − 1) m and finish at time rm . In case

 > 0 , in the last block k + 1 , the last l jobs start at km and finish

t (k + 1) m, but in this block the machines incur some idle inter-

al. 

Note that there is a machine (m 2 in Example 3 ) that processes 

ll operations continuously, and C i (s ∗) = 

⌈ 

σ 2 (i ) 
m 

⌉ 

m for all i ∈ N, 1 

ndeed. Note also that, in fact, there are many optimal schedules 

hich can be obtained by just switching the names of the players. 

. Open shop scheduling games 

Under the assumption that there is an initial feasible schedule 

 0 ∈ S that describes the initial processing of the operations on all 

achines, an open shop scheduling problem with initial schedule , s 0 , 

s a 5 −tuple (N, M, p, α, s 0 ) , while a unit open shop scheduling prob-

em with initial schedule , s , is a triplet (N, M, s ) . 
0 0 

1 For all x ∈ R , � x 
 := min { k ∈ Z | x ≤ k } . 

v  

n  

i

14 
A cooperative transferable utility (TU) game is defined by a pair 

N, v ) where N is the (finite) player set and the characteristic func- 

ion v assigns a real number v (T ) to each coalition T ⊆ N, with

 (∅ ) = 0 . 

For any coalition ∅ � = T ⊆ N and any feasible schedule s ∈ S, by

 T (s ) = 

∑ 

i ∈ T c i (s ) , we denote the waiting cost of the coalition T 

ccording to s . Then, given an open shop scheduling problem with 

nitial schedule (N, M, p, α, s 0 ) , we define the open shop schedul-

ng game (N, v ) where the characteristic function assigns to ev- 

ry coalition the maximal cost savings it can obtain by means 

f admissible rearrangements (or admissible schedules). That is, 

f AS (T ) ⊆ S denotes the set of admissible schedules for coalition 

 � = T ⊆ N, 

 (T ) = c T (s 0 ) − c T (s ∗T ) , 

here s ∗
T 

is an optimal admissible schedule for coalition T , that is 

 T (s ∗T ) = min 

s ∈ AS (T ) 
c T (s ) . In the following, AS ∗(T ) stands for the set

f optimal admissible schedules for coalition T . 

Observe that for (N, M, s 0 ) , the corresponding unit open shop 

cheduling game (N, v ) can be easily defined by means of the 

ompletion times of the players (jobs). Let C T (s ) = 

∑ 

i ∈ T C i (s ) for

ll s ∈ S, then v (T ) = C T (s 0 ) − C T (s ∗
T 
) for all ∅ � = T ⊆ N, where s ∗

T 
∈

S ∗(T ) . 

Clearly, AS (N) should coincide with S under any definition of 

dmissible rearrangement. Curiel et al. (1993) impose two prin- 

iples that should be considered when defining which rearrange- 

ents are admissible for a coalition: 

i) The rearrangement should not hurt the interests of the players 

outside the coalition. 

ii) The rearrangement should be possible without an active coop- 

eration of players outside the coalition. 

Following most of the literature on one or multiple parallel ma- 

hines (see for instance Curiel et al., 2002 ) we say that a schedule

, which is compatible with the unique scheme σ, will be admissi- 

le for a coalition ∅ � = T ⊂ N if for each machine, no player outside

he coalition T has a different set of predecessors as initially. That 

s, if by σ0 we denote the unique scheme compatible with s 0 , for 

ll i ∈ N \ T and all j ∈ M, it holds 

 k ∈ N : σ j (k ) < σ j (i ) } = { k ∈ N : σ j 
0 
(k ) < σ j 

0 
(i ) } . (1)

ence, for a given j ∈ M, switches are only allowed among play- 

rs from connected coalitions. A coalition T ⊆ N is called connected 

ith respect to σ j 
0 

if for all i, i ′ ∈ T and k such that σ j 
0 
(i ) < σ j 

0 
(k ) <

j 
0 
(i ′ ) , it holds that k ∈ T . We denote by T /σ j 

0 
the set of maximally

onnected components of T according to σ j 
0 

. We denote the set of 

dmissible schedules for coalition T that satisfies (1) by AS 1 (T ) . 

nfortunately, as shown in Example 4 , given T ⊆ N, AS 1 ∗ (T ) might 

nclude admissible rearrangements that hurt players outside the 

oalition T . 

xample 4. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 , 4 , 5 } , M = { 1 , 2 } ,
nd the initial schedule, s 0 , as follows: 

m 1 1 2 3 4 5 

m 2 5 1 3 4 2 

Let T = { 3 , 5 } . The optimal schedule s ∗T ∈ AS 1 ∗ (T ) is: 

m 1 1 2 3 4 5 

m 2 5 1 3 4 2 

Then, C 3 (s 0 ) = 4 , C 5 (s 0 ) = 6 while C 3 (s ∗
T 
) = 4 , C 5 (s ∗

T 
) = 5 , and

 ({ 3 , 5 } ) = 1 . However, s ∗
T 

hurts the interests of player 2, who does

ot take part of the coalition T , since C 2 (s 0 ) = 5 < 6 = C 2 (s ∗T ) . It

s worth mentioning that although one may argue that to obtain 
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∗
T , from s 0 , requires the active cooperation of players 2 and 4 as

perations (2,2) and (4,2) are delayed, we can also interpret that 

s enough that player 3 decides to process the operation (3,1) first 

nstead of the operation (3,2). 

The following example shows that, given T ⊆ N, AS 1 ∗ (T ) might 

nclude an admissible rearrangement that unambiguously requires 

he active cooperation of players outside coalition T . 

xample 5. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 } , M = { 1 , 2 } , and

he initial schedule, s 0 , as follows: 

m 1 1 2 3 

m 2 1 3 2 

Let T = { 2 } . An optimal schedule s ∗T ∈ AS 1 ∗ (T ) is: 

m 1 1 2 3 

m 2 1 3 2 

Then, C 2 (s 0 ) = 5 , C 2 (s ∗T ) = 4 , and hence v ({ 2 } ) = 1 . Even though

 

∗
T 

delays the operation (3,1), C 3 (s 0 ) = C 3 (s ∗
T 
) , and hence player 3

s not hurt. However, changing from schedule s 0 to s ∗
T 

requires the 

ctive cooperation of player 3. Observe that, contrary to s 0 , in s ∗T 
layer 3 decides to process first (3,2) instead of (3,1). 

In view of Examples 4 and 5 , it is clear that due to the fact

hat coalitions can make use of idle times on machines, condition 

1) is not enough to guarantee the two principles required for the 

efinition of admissible rearrangements of a coalition. 

In Curiel et al. (1993) , a number of different approaches to 

dmissible arrangements are studied. They combine two different 

deas. In the first one, players in a coalition are allowed to jump 

ver players outside the coalition. We will address this approach 

ater. In the second one, they simply focus on the starting time 

completion time) of operations of players outside the coalition. If 

hose times do not increase, they will not be worse off. We present 

hree proposals, inspired by those in Curiel et al. (1993) . The first 

ne is based on the starting time of operations. That is, a sched- 

le s ∈ S, with corresponding compatible scheme σ, is admissible 

or coalition ∅ � = T ⊂ N if it satisfies (1) and the starting time of

perations of players outside T remains unchanged: 

or all i ∈ N \ T and all j ∈ M, it holds that, s (i, j) = s 0 (i, j) . (a)

We denote the set of admissible schedules for coalition T that 

atisfy (1) and (a) by AS 1 a (T ) . 

A second approach considers that a schedule s ∈ S with corre- 

ponding compatible scheme σ is admissible for a coalition ∅ � = 

 ⊂ N if it satisfies (1) and the starting time of operations of play- 

rs outside T does not increase: 

or all i ∈ N \ T and all j ∈ M, it holds that, s (i, j) ≤ s 0 (i, j) . (b)

e denote the set of admissible schedules for coalition T that sat- 

sfy (1) and (b) by AS 1 b (T ) . 

In Curiel et al. (1993) , only one machine problems are studied, 

ence condition (a) is equivalent to enforcing non-increasing com- 

letion times for all i ∈ N \ T . Following that spirit, we introduce

 new definition of admissible rearrangements. A schedule s ∈ S
ith corresponding compatible scheme σ is admissible for a coali- 

ion ∅ � = T ⊂ N if it satisfies (1) and the completion time of players

utside T does not increase: 

or all i ∈ N \ T , it holds that , C i (s ) ≤ C i (s 0 ) . (c)

We denote the set of admissible schedules for coalition T that 

atisfy (1) and (c) by AS 1 c (T ) . 

Clearly, for a given ∅ � = T ⊂ N, we have AS 1 a (T ) ⊆ AS 1 b (T ) ⊆
S 1 c (T ) ⊆ AS 1 (T ) . Moreover, conditions (a) , (b) , and (c) ensure

hat admissible rearrangements will not hurt the interests of play- 

rs outside the coalition. 
15 
On the other hand, in Example 5 , for T = { 2 } , s ∗
T 

∈ AS 1 c ∗ (T ) and,

s noted, changing from s 0 to s ∗T requires the active cooperation of 

layer 3. Observe that this is possible because player 3 “makes use”

f the idle times on machines. Given s 0 ∈ S and ∅ � = T ⊂ N, a player

 ∈ N \ T can only “make use” of idle times in profit of coalition T 

o reach a rearrangement s ∈ AS 1 c (T ) , as player 3 in Example 5 ,

f there is a machine j ∈ M such that the initial starting time of 

peration (i, j) , s 0 (i, j) , is smaller than the starting time of (i, j)

ccording to s ; 

 0 (i, j) < s (i, j) . 

n Example 5 , such machine is m 1 . Hence, obviously, s / ∈ AS 1 b (T ) .

hen, admissible rearrangements in AS 1 a (T ) and AS 1 b (T ) do not 

llow for the active cooperation of players outside T . 

Allowing players in a coalition to jump over players outside the 

oalition, that is relaxing condition (1) , give rise to larger sets of 

dmissible rearrangements. If we follow the same approach intro- 

uced in Curiel et al. (1993) and later used by Slikker (2006) , we

ould like to change condition (1) by the following weaker con- 

ition on the schemes. Let σ0 be the unique scheme compatible 

ith s 0 , we say that a schedule s is admissible for ∅ � = T ⊂ N if for

ll i ∈ N \ T and all j ∈ M, it holds 

j 
0 
(i ) = σ j (i ) , (2) 

here σ is the unique scheme compatible with s . Condition (2) re- 

uires that players outside the coalition T maintain the same po- 

ition as initially on every machine. From the perspective of the 

embers of coalition T and for an arbitrary machine j ∈ M, now, 

hey are allowed to switch their positions, independently if they 

elong to the same connected component according to σ j 
0 

. The set 

f admissible schedules for coalition T that satisfy (2) is denoted 

y AS 2 (T ) . 

Further relaxations of condition (1) can be obtained by impos- 

ng that a schedule s is admissible for ∅ � = T ⊂ N, if for all i ∈ N \ T 
nd all j ∈ M it holds 

 k ∈ N : σ j (k ) < σ j (i ) } ⊆ { k ∈ N : σ j 
0 
(k ) < σ j 

0 
(i ) } , (3)

ith σ0 and σ being the schemes corresponding to s 0 and s, re- 

pectively. Clearly (3) weakens condition (1) since each player out- 

ide coalition T do not get any new predecessor on each machine. 

his approach is similar to the one taken in Musegaas et al. (2015) .

y AS 3 (T ) we denote the set of admissible schedules for coalition 

 that satisfy (3) . Interestingly, condition (1) implies both, condi- 

ions (2) and (3) , but conditions (2) and (3) do not imply each 

ther. 

Finally, we introduce the weakest relaxation of condition (1) : a 

chedule s is admissible for ∅ � = T ⊂ N, if for all i ∈ N \ T and all

j ∈ M, it holds 

j 
0 
(i ) ≥ σ j (i ) . (4) 

ith σ0 and σ being the schemes corresponding to s 0 and s, re- 

pectively. Condition (4) imposes that the number of predecessors 

or a player outside coalition T do not increase on each machine. 

y AS 4 (T ) we denote the set of admissible schedules for coalition 

 that satisfy (4) . Notice that (4) is implied by conditions (1) –(3) . 

Of course, if we want to prevent hurting players in N \ T we 

hould combine (2) –(4) with either (a) or (b) or (c) . We would then

btain some new domains of admissible schedules for T : AS 2 a (T ) , 

S 2 b (T ) , AS 2 c (T ) , AS 3 a (T ) , AS 3 b (T ) , AS 3 c (T ) , AS 4 a (T ) , AS 4 b (T )

nd AS 4 c (T ) . 

For every different set of admissible rearrangements, we can as- 

ociate the corresponding cooperative TU-game. Let (N, v k ) denote 

he game where the set of admissible rearrangements for a coali- 

ion ∅ � = T ⊆ N is AS k (T ) , with k ∈ { 1 , 2 , 3 , 4 } ; and let (N, v kl ) de-

ote the game where the set of admissible rearrangements for a 
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oalition ∅ � = T ⊆ N is AS kl (T ) , with k ∈ { 1 , 2 , 3 , 4 } and l ∈ { a, b, c} .
roposition 6 provides the relation among these games. 

roposition 6. Let (N, M, p, α, s 0 ) be an open shop scheduling prob-

em with initial schedule. Then, it holds 

v 1 (N) = v 2 (N) = v 3 (N) = v 4 (N) , 

v k (N) = v ka (N) = v kb (N) = v kc (N) for all k ∈ { 1 , 2 , 3 , 4 } , 
v 1 (T ) ≤ v 2 (T ) ≤ v 4 (T ) for all T ⊂ N , 

v 1 (T ) ≤ v 3 (T ) ≤ v 4 (T ) for all T ⊂ N , and 

v ka (T ) ≤ v kb (T ) ≤ v kc (T ) ≤ v k (T ) for all T ⊂ N and all k ∈ { 1 , 2 , 3 , 4 } . 
roof. It follows from the observation that for an arbitrary ∅ � = T ⊂
, it holds 

AS 1 (T ) ⊆ AS 2 (T ) ⊆ AS 4 (T ) , 

AS 1 (T ) ⊆ AS 3 (T ) ⊆ AS 4 (T ) , and 

AS ka (T ) ⊆ AS kb (T ) ⊆ AS kc (T ) ⊆ AS k (T ) for all k ∈ { 1 , 2 , 3 , 4 } . 
n case T = N all the sets of admissible schedules are equal 

nd equal to S, i.e. S = AS 1 (N) = AS 2 (N) = AS 3 (N) = AS 4 (N)

nd S = AS ka (N) = AS kb (N) = AS kc (N) = AS k (N) for all 

 ∈ { 1 , 2 , 3 , 4 } . �

. Non-emptiness of the core for unit open shop games 

Given a cooperative game (N, v ) , a payoff vector x ∈ R 

N repre-

ents the payoffs to the players. Each component x i is interpreted 

s the allotment to player i ∈ N. The total payoff to a coalition 

 ⊆ N is denoted by x (S) = 

∑ 

i ∈ S x i with x (∅ ) = 0 . In order to study

he set of stable allocations of the total cost savings N can obtain, 

e introduce the core of a cooperative game (N, v ) that consists 

f those payoff vectors that satisfy efficiency and every coalition 

 ⊂ N receives at least its worth: x (S) ≥ v (S) ( Gillies, 1959 ). For-

ally, the core of a cooperative game (N, v ) is: 

(v ) = { x ∈ R 

N | x (N) = v (N) , x (S) ≥ v (S) for all S ⊂ N} . 
 game is balanced if it has a non-empty core. Convexity ( Shapley,

971 ) and σ -component additivity ( Curiel, Potters, Prasad, Tijs, & 

eltman, 1994 ) are conditions that have been extensively stud- 

ed to prove balancedness of scheduling games associated with 

ifferent scheduling problems (see for instance Curiel et al., 

994; Hamers, Borm, & Tijs, 1995; Borm, Fiestras-Janeiro, Hamers, 

ánchez, & Voorneveld, 2002; Musegaas, Borm, & Quant, 2018 ). 

 game (N, v ) is said to be convex if v (T ∪ { i } ) − v (T ) ≥ v (S ∪
 i } ) − v (S) for all i ∈ N and all S ⊆ T ⊆ N\{ i } . Given an open shop

cheduling problem with initial schedule, the next remark, which 

s shown by means of counterexamples, stresses that none of the 

ixteen classes of open shop games introduced in Section 3 needs 

o be convex, not even for unit open shop scheduling problems. 

emark 7. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, the associated games (N, v k ) for all k ∈
 1 , 2 , 3 , 4 } and (N, v kl ) for all k ∈ { 1 , 2 , 3 , 4 } and all l ∈ { a, b, c} need

ot be convex. 

We first show, in Example 8 , that (N, v 1 ) and (N, v 1 l ) with l ∈
 a, b, c} need not be convex. 

xample 8. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , M =
 1 , 2 } , and the initial schedule, s 0 , as follows: 

m 1 1 2 3 4 5 6 7 

m 2 6 5 7 1 2 3 4 

Take S = { 3 , 5 } , T = { 1 , 2 , 3 , 5 , 7 } and i = 4 . The optimal sched-

le for coalition S under condition (1) , s ∗
S 

∈ AS 1 ∗ (S) , is s 0 , since the

perations of players 3 and 5 are disconnected on both machines 

nd machines process all operations continuously according to s . 
0 

16 
he schedule s ∗
S∪{ i } ∈ AS 1 ∗ (S ∪ { i } ) is optimal for coalition S ∪ { i } : 

m 1 1 2 5 3 4 6 7 

m 2 6 5 7 1 2 3 4 

The schedule s ∗T ∈ AS 1 ∗ (T ) is optimal for coalition T : 

m 1 1 2 3 4 5 6 7 

m 2 6 1 2 5 3 7 4 

The schedule s ∗
T ∪{ i } ∈ AS 1 ∗ (T ∪ { i } ) is optimal for coalition T ∪

 i } : 
m 1 1 2 3 5 4 6 7 

m 2 6 1 2 3 5 7 4 

Therefore, v 1 (T ∪ { i } ) − v 1 (T ) = 6 − 5 < 2 − 0 = v 1 (S ∪ { i } ) − v 1 (S) .

ence, the game (N, v 1 ) is not convex. 

Moreover, since every optimal schedule satisfies (a) and, thus, 

a) and (c) , the coalitional worth for S, S ∪ { i } , T , and T ∪ { i } is the

ame in the game (N, v 1 ) as in the game (N, v 1 l ) for all l ∈ { a, b, c} .
ence neither (N, v 1 ) nor (N, v 1 l ) for all l ∈ { a, b, c} are convex

ames. 

Second, we show, in Example 9 , that (N, v 2 ) , (N, v 4 ) and

N, v 2 l ) , (N, v 4 l ) with l ∈ { a, b, c} need not be convex. 

xample 9. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , M =
 1 , 2 } , and the initial schedule, s 0 , as follows: 

m 1 1 2 3 4 5 6 7 

m 2 6 4 5 2 3 7 1 

Take S = { 4 , 5 , 6 } , T = { 2 , 3 , 4 , 5 , 6 } and i = 1 . The optimal sched-

le for coalition S under condition (4) , s ∗
S 

∈ AS 4 ∗ (S) , is s 0 . Coalition

can not obtain any cost saving by switching the positions of the 

perations of jobs 4, 5, and 6 on the machines, neither by dimin- 

shing the position of the operations of jobs outside the coalition. 

he schedule s ∗
S∪{ i } ∈ AS 4 ∗ (S ∪ { i } ) is optimal for coalition S ∪ { i } : 

m 1 4 2 3 5 6 1 7 

m 2 6 4 5 2 3 7 1 

The schedule s ∗T ∈ AS 4 ∗ (T ) is optimal for coalition T : 

m 1 1 2 3 4 5 6 7 

m 2 2 3 4 5 6 7 1 

The schedule s ∗
T ∪{ i } ∈ AS 4 ∗ (T ∪ { i } ) is optimal for coalition T ∪

 i } : 
m 1 2 3 4 5 1 6 7 

m 2 3 2 5 4 6 7 1 

Therefore, v 4 (T ∪ { i } ) − v 4 (T ) = 6 − 4 < 4 − 0 = v 4 (S ∪ { i } ) −
 

4 (S) . Hence, the game (N, v 4 ) is not convex. 

Furthermore, every optimal schedule holds condition (2) and, 

dditionally, satisfies (a) and, thus, (b) and (c) . Then, the coali- 

ional worth for S, S ∪ { i } , T , and T ∪ { i } is the same in the game

N, v 4 ) as in the games (N, v 2 ) , (N, v 2 l ) , (N, v 4 l ) for all l ∈ { a, b, c} .
ence, neither (N, v 2 ) and (N, v 4 ) , nor (N, v 2 l ) and (N, v 4 l ) for all

 ∈ { a, b, c} are convex games. 

Finally, we show that (N, v 3 ) and (N, v 3 l ) with l ∈ { a, b, c} need

ot be convex. Here, we will consider both, Examples 8 and 9 . 

irst, consider Example 8 to conclude that (N, v 3 a ) need not be 

onvex. 

Example 8 (revisited): The optimal schedules for coalitions S, 

 ∪ { i } , T and T ∪ { i } under condition (1) are also optimal if we im-

ose (3) and (a) together. Observe that, although (3) is weaker than 
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1) , condition (a) is very strong and moreover, machines operate con- 

inuously according to s 0 leaving no room to obtain additional cost 

avings to the coalitions. Therefore, the worth for these coalitions is 

he same in the game (N, v 1 ) as in the game (N, v 3 a ) which does nei-

her need to be convex. 

To finish, consider Example 9 again. 

Example 9 (revisited): For coalitions S, T and T ∪ { i } , the sched-

les s ∗S , s 
∗
T and s ∗

T ∪{ i } satisfy condition ( 3 ), and, additionally conditions 

b) and (c) . Consequently, the coalitional worth for these coalitions is 

he same in the game (N, v 4 ) than in the games (N, v 3 ) and (N, v 3 l )
ith l ∈ { b, c} . However, the schedule s ∗

S∪{ i } for coalition S ∪ { i } does

ot satisfy ( 3 ), since, compared to s 0 , the operations of jobs 2 and 3

et a new predecessor on the first machine. An optimal schedule for 

oalition S ∪ { i } under condition ( 3 ) is: 

m 1 2 3 4 5 6 1 7 

m 2 6 4 5 2 3 7 1 

Therefore, v 3 (T ∪ { i } ) − v 3 (T ) = 6 − 4 < 3 − 0 = v 3 (S ∪ { i } ) −
 

3 (S) . Hence, the game (N, v 3 ) is not convex. Notice that the optimal

chedule for coalition S ∪ { i } under condition ( 3 ) also satisfies (b) and

c) . Then, the worth of S ∪ { i } is the same in the game (N, v 3 ) as

n the games (N, v 3 b ) and (N, v 3 c ) , and, hence, none of these three

ames is convex. 

We have then provided the necessary arguments, by means of 

ounterexamples, to show Remark 7 . 

σ -component additivity, as well as convexity, implies balanced- 

ess. A game (N, v ) is said to be superadditive if v (S ∪ T ) ≥ v (S) +
 (T ) for all S, T ⊆ N, S ∩ T = ∅ . Let σ be an order on the player set

, a game (N, v ) is said to be σ -component additivity if it satisfies

he following three conditions: 

• v ({ i } ) = 0 for all i ∈ N, 

• (N, v ) is superadditive, 
• v (T ) = 

∑ 

S∈ T /σ v (S) for all T ⊆ N. 

In Example 5 , and for T = { 2 } , we obtained v 1 (T ) = 1 . So, the

ame (N, v 1 ) is not σ -component additive. In the following remark 

e emphasize, by a single counterexample, that none of the six- 

een games introduced in Section 3 is σ -component additive, not 

ven for unit open shop scheduling problems. 

emark 10. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, the associated games (N, v k ) for all k ∈
 1 , 2 , 3 , 4 } and (N, v kl ) for all k ∈ { 1 , 2 , 3 , 4 } and all l ∈ { a, b, c} need

ot be σ -component additive. 

Example 11 provides the necessary arguments to show 

emark 10 . 

xample 11. Consider (N, M, s 0 ) with N = 

 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } , M = { 1 , 2 , 3 , 4 } , and the initial schedule,

 0 , as follows: 

m 1 1 2 3 4 5 6 7 8 9 10 

m 2 5 3 2 9 6 4 1 7 10 8 

m 3 3 1 5 7 9 10 8 4 2 6 

m 4 2 5 1 10 3 8 6 9 7 4 

We first show that the game (N, v 1 a ) need not be σ - 

omponent additive. Observe that v 1 a ({ i } ) = 0 for all i ∈ N. More-

ver v 1 a ({ 1 , 4 } ) = v 1 a ({ 2 , 4 } ) = v 1 a ({ 4 , 5 } ) = 1 . To reach the opti-

al schedules for coalitions { 1 , 4 } , { 2 , 4 } , and { 4 , 5 } , players 1

nd 4 switch their operations on second machine, players 2 and 

 switch their operations on third machine, and players 4 and 

 switch their operations on first machine, respectively. Hence, 

 1 , 4 } , { 2 , 4 } , and { 4 , 5 } have to be connected with respect to σ,

ut there is no ordering of the ten players that makes that possi- 

le. Consequently, (N, v 1 a ) is not σ -component additive. 
17 
Moreover, from Proposition 6 , given an arbitrary coalition T ⊂
, it holds that v 1 a (T ) is smaller than or equal to the coali-

ional worth of T in any other of the fifteen games introduced in 

ection 3 . Then, the coalitional worth of coalitions { 1 , 4 } , { 2 , 4 } ,
nd { 4 , 5 } is strictly positive in any of them. So, { 1 , 4 } , { 2 , 4 } ,
nd { 4 , 5 } have to be connected with respect to σ, but this is

ot possible. We conclude that none of the games (N, v k ) with 

 ∈ { 1 , 2 , 3 , 4 } and (N, v kl ) with k ∈ { 1 , 2 , 3 , 4 } and l ∈ { a, b, c} is σ
component additive. 

Given an open shop scheduling problem with initial schedule 

N, M, p, α, s 0 ) , and in view of Proposition 6 , if we show that the

ssociated game (N, v 4 ) is balanced, we can conclude that any of 

he rest of games introduced in Section 3 is balanced as well. Un- 

ortunately, balancedness does not need to hold for general open 

hop problems (see Remark 16 in Section 5 ) and, henceforth, we 

estrict our attention to unit open shop scheduling problems with 

nitial schedule (N, M, s 0 ) . As a consequence of the lack of struc-

ure of the game (N, v 4 ) , displayed in Remarks 7 and 10 , we ex-

lore the possibility to obtain an allocation rule of the total cost 

avings laying in the core. This strategy has been used from Curiel, 

ederzoli and Tijs (1989) , who introduce the equal gain splitting 

ule, EGS, for 1-machine situations. In our setting, a 1-machine sit- 

ation corresponds to an open shop scheduling problem with ini- 

ial schedule (N, M, p, α, s 0 ) with M = { 1 } . Concretely, they show

hat EGS(N, M, p, α, s 0 ) ∈ C(N, v 1 ) for every 1-machine situation. An

nterpretation of the EGS is as follows. For 1-machine situations, 

e can always describe a procedure to obtain an optimal sched- 

le (the higher the urgency of the job, 
αi 
p i 

, the sooner it is pro-

essed) from the initial one by switching jobs of neighbours in- 

olving some strictly positive cost savings, consecutively. Roughly 

peaking the EGS assigns to each player the half of the cost sav- 

ngs obtained by every switch of her job with the job of a neigh- 

our in such a procedure. This idea is difficult to extend to open 

hop problems with more than a single machine. Not only because 

f finding optimal schedules is an NP-hard problem, but also due 

o obtaining a procedure to construct the optimal schedule from 

he initial one by means of switches involving some positive cost 

avings, if possible, might be hard as well. 

However, given a unit open shop scheduling problem with 

nitial schedule (N, M, s 0 ) and in view of Algorithm 2 (see also

xample 3 ), for all j ∈ M there exists an optimal schedule, that 

e call s ∗
j 
, for N such that its unique compatible scheme σ ∗ ∈ �

atisfies ( σ ∗) j = σ j 
0 

and, moreover, machine j does not incur any 

dle time (operations on machine j are processed continuously) ac- 

ording to s ∗
j 
. For any j ∈ M, we introduce the j-based allocation

j (N, M, s 0 ) ∈ R 

N by: 

j 
i 
(N, M, s 0 ) = C i (s 0 ) − C i (s ∗j ) for all i ∈ N. 

iven j ∈ M, this allocation assigns to each player the difference 

etween her initial waiting cost and her cost associated with the 

ptimal schedule s ∗
j 

for N. We can interpret that according to μ j 

he processing order rights acquired by the players according to 
j 

0 
are dominant. Observe that urgencies of players are all equal 

nd there are as many optimal schedules as possible orders on the 

obs, according to Algorithm 2 . So, apparently, it could be natural 

o respect one of the initial orders on the machines when design- 

ng the optimal schedule. This allocation is efficient, since 
 

i ∈ N 
μ j 

i 
(N, M, s 0 )= 

∑ 

i ∈ N 

(
C i (s 0 ) − C i (s ∗j ) 

)
= C N (s 0 ) − C N (s ∗j ) = v 4 (N) ,

here the last equality follows from the fact that s ∗
j 

is optimal for 

. However, as the next example shows, μ j (N, M, s 0 ) does not need

o satisfy μ j 
i 
(N, M, s 0 ) ≥ v 4 ({ i } ) for all i ∈ N, and hence need not be

 core element. 
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xample 12. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 , 4 } , M = { 1 , 2 } ,
nd the initial schedule, s 0 , as follows: 

m 1 1 2 3 4 

m 2 3 4 1 2 

Let j = 1 . Then, s ∗
1 

is: 

m 1 1 2 3 4 

m 2 2 1 4 3 

Now, consider i = 3 . Then, 

1 
3 (N, M, s 0 ) = C 3 (s 0 ) − C 3 (s ∗1 ) = 3 − 4 = −1 < v 4 ({ 3 } ) = 0 . 

ence, the allocation μ1 (N, M, s 0 ) is not a core element of the

ame (N, v 4 ) . 

Given (N, M, s 0 ) , in Theorem 14 we will show that although

he j -based allocation does not need to be a core element, sur- 

risingly, the average of all μ j (N, M, s 0 ) always belongs to the 

ore. For any (N, M, s 0 ) , the average machine-based allocation rule 

¯ (N, M, s 0 ) ∈ R 

N is defined by 

¯ (N, M, s 0 ) = 

1 

m 

∑ 

j∈ M 

μ j (N, M, s 0 ) . 

The interpretation of μ̄ is very natural, since it makes all pos- 

ible optimal schedules for N (obtained from Algorithm 2 ) that 

aintains the initial order in one of the machines, s ∗
j 

for all j ∈ M,

qually likely. Then, a player receives her expectation of cost sav- 

ngs. In order to show our main result, let us first prove a technical 

emma that establishes an upper bound for the difference between 

he completion times of a job i ∈ N, according to an initial schedule

 0 and to any other feasible schedule s . 

emma 13. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, for all feasible schedule s ∈ S, and i ∈ N,

t holds 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) −

⌈
C j 

i 
(s ) 

m 

⌉
m 

)
≥ C i (s 0 ) − C i (s ) . (5) 

roof. Let (N, M, s 0 ) , s ∈ S, and i ∈ N. Let j ∗ ∈ M be such that

 i (s ) = C 
j ∗
i 

(s ) . Then, clearly C 
j 
i 
(s ) ≤ C 

j ∗
i 

(s ) for all j ∈ M. Moreover, 

 

j ∗

i 
(s ) ≤

⌈
C j∗

i 
(s ) 

m 

⌉
m. 

ere, if according to s we make consecutive blocks of m units 

f time from the moment at which the system starts processing, 

C 
j ∗
i 

(s ) 

m 

⌉
stands for the block in which the operation of player i is 

rocessed on machine j ∗. 

We distinguish between two cases: 

ase 1: C 
j ∗
i 

(s ) = 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
m . 

n Case 1, the operation of job i on machine j ∗ is exactly the last

peration to be processed in block 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
according to s . In the 

raph we represent only machine j ∗: 

From the definition of j ∗ ∈ M it follows that 

 i (s 0 ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m = C i (s 0 ) − C i (s ) , (6) 
18 
nd for any other machine j ∈ M

 i (s 0 ) −
⌈

C j 
i 
(s ) 

m 

⌉
m ≥ C i (s 0 ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m (7) 

= C i (s 0 ) − C i (s ) . 

hen, from (6) and (7) 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) −

⌈
C j 

i 
(s ) 

m 

⌉
m 

)
≥ 1 

m 

∑ 

j∈ M 

( C i (s 0 ) − C i (s ) ) 

= C i (s 0 ) − C i (s ) , 

hich finishes Case 1. 

ase 2: C 
j ∗
i 

(s ) < 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
m . 

n Case 2, the operation of job i on machine j ∗ is not the last oper-

tion to be processed in block 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
according to s . In the graph 

e represent only machine j ∗: 

By definition of j ∗, 

C j 
i 
(s ) 

m 

⌉
≤

⌈
C j 

∗

i 
(s ) 

m 

⌉

or all j ∈ M. 

Let J ∗ = 

{ 

j ∈ M : 

⌈
C 

j 
i 
(s ) 

m 

⌉
= 

⌈
C 

j ∗
i 

(s ) 

m 

⌉} 

. Then, according to s, J ∗ is

he set of machines for which the operation of player i according 

o s is processed in the same block as the operation of player i is

rocessed on machine j ∗, that is, in block 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
. Note that J ∗ � = ∅

ince j ∗ ∈ J ∗. On the other hand, if j ∈ M \ J ∗, then 

C j 
i 
(s ) 

m 

⌉
< 

⌈
C j 

∗

i 
(s ) 

m 

⌉

r equivalently 

C j 
i 
(s ) 

m 

⌉
≤

⌈
C j 

∗

i 
(s ) 

m 

⌉
− 1 (8) 

o establish an upper bound for | J ∗| , notice that all j ∈ J ∗, j � = j ∗,
rocess the operation of job i in the same block as j ∗, i.e. in block

C 
j ∗
i 

(s ) 

m 

⌉
, that contains exactly m units of time. Additionally, the 

peration of job i is processed at the unit of time C 
j ∗
i 

(s ) on ma-

hine j ∗ and we have C 
j 
i 
(s ) < C 

j ∗
i 

(s ) for all j ∈ J ∗, j � = j ∗. Hence, as

lock 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
starts processing at 

⌊
C 

j ∗
i 

(s ) 

m 

⌋
m and s ∈ S is a feasi- 

le schedule, and thus, two operations of the same job are not al- 

owed to be processed simultaneously on two different machines, 

here are only C 
j ∗
i 

(s ) −
⌊

C 
j ∗
i 

(s ) 

m 

⌋
m positions available in the block 

o process the operation of job i on different machines. So, there 

re as much as C 
j ∗
i 

(s ) −
⌊

C 
j ∗
i 

(s ) 

m 

⌋
m different machines in J ∗, i.e. 

 J ∗| ≤ C j 
∗

i 
(s ) −

⌊
C j 

∗

i 
(s ) 

m 

⌋
m. (9) 
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Consequently, 

 M \ J ∗| ≥ m −
(

C j 
∗

i 
(s ) −

⌊
C j 

∗

i 
(s ) 

m 

⌋
m 

)
. (10) 

Then, 

∑ 

j∈ M 

(
C i (s 0 ) −

⌈
C j 

i 
(s ) 

m 

⌉
m 

)

= 

∑ 

j∈ J ∗

(
C i (s 0 ) −

⌈
C j 

i 
(s ) 

m 

⌉
m 

)
+ 

∑ 

j∈ M\ J ∗

(
C i (s 0 ) −

⌈
C j 

i 
(s ) 

m 

⌉
m 

)

≥
∑ 

j∈ J ∗

(
C i (s 0 ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m 

)
+ 

∑ 

j∈ M\ J ∗

(
C i (s 0 ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m + m 

)

= | J ∗| 
(

C i (s 0 ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m 

)
+ | M \ J ∗ | 

(
C i (s 0 ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m + m 

)

= | J ∗| 
(

C i (s 0 ) − C i (s ) + C i (s ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m 

)

+ | M \ J ∗ | 
(

C i (s 0 ) − C i (s ) + C i (s ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m + m 

)

= m (C i (s 0 ) − C i (s )) + | J ∗| 
(

C i (s ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m 

)

+ | M \ J ∗ | 
(

C i (s ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m + m 

)

≥ m (C i (s 0 ) − C i (s )) + 

(
C j 

∗

i 
(s ) −

⌊
C j 

∗

i 
(s ) 

m 

⌋
m 

)(
C i (s ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m 

)

+ | M \ J ∗ | 
(

C i (s ) −
⌈

C j 
∗

i 
(s ) 

m 

⌉
m + m 

)

≥ m (C i (s 0 ) − C i (s )) + 

(
C j 

∗

i 
(s ) −

⌊
C j 

∗

i 
(s ) 

m 

⌋
m 

)(
C i (s ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m 

)

+ 

(
m −

(
C j 

∗

i 
(s ) −

⌊
C j 

∗

i 
(s ) 

m 

⌋
m 

))(
C i (s ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m + m 

)

= m (C i (s 0 ) − C i (s )) + 

(
C i (s ) −

⌈
C j 

∗

i 
(s ) 

m 

⌉
m 

)
m + m 

(
m − C j 

∗

i 
(s ) + 

⌊
C j 

∗

i 
(

m

= m (C i (s 0 ) − C i (s )) + m 

(
m 

(
1 + 

⌊
C j 

∗

i 
(s ) 

m 

⌋
−

⌈
C j 

∗

i 
(s ) 

m 

⌉))
= m (C i (s 0 ) − C i (s )) . 

ere, the first inequality follows from the definition of J ∗ and 

8) . The second inequality follows from (9) and the fact that 

 i (s ) −
⌈

C 
j ∗
i 

(s ) 

m 

⌉
m < 0 , due to in Case 2 we assume C i (s ) = C 

j ∗
i 

(s ) <

C 
j ∗
i 

(s ) 

m 

⌉
m . The third inequality holds from (10) , and the fact that 

 i (s ) = C 
j ∗
i 

(s ) , and then 

C i (s ) −
⌈

C 
j ∗
i 

(s ) 

m 

⌉
m + m = m 

(
C 

j ∗
i 

(s ) 

m 

+ 1 −
⌈

C 
j ∗
i 

(s ) 

m 

⌉)
> 0 . 

The last but one equality follows from C i (s ) = C 
j ∗
i 

(s ) by defini-

ion of j ∗. Finally, the last equality follows from the assumption 

hat in Case 2 the operation of job i on machine j ∗ is not the

ast operation to be processed in block 

⌈
C 

j ∗
i 

(s ) 

m 

⌉
, and consequently, 

C 
j ∗
i 

(s ) 

m 

/ ∈ Z and 1 + 

⌊
C 

j ∗
i 

(s ) 

m 

⌋
−

⌈
C 

j ∗
i 

(s ) 

m 

⌉
= 0 . 

Consequently, (5) holds and this finishes Case 2. �

Remarkably, Lemma 13 holds for an arbitrary player i ∈ N and 

n arbitrary feasible schedule s ∈ S . In particular, for any player 
19 
 

)

elonging to a given coalition T ⊆ N and an optimal schedule, 

 

∗
T ∈ AS 4 ∗ (T ) ⊂ S, for such coalition, which will be helpful to prove 

he next theorem. Now, we can state the main result of the paper. 

heorem 14. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, μ̄(N, M, s 0 ) ∈ C(v 4 ) . 

roof. Let (N, M, s 0 ) , μ
j (N, M, s 0 ) = μ j , and μ̄(N, M, s 0 ) = μ̄. First,

e show that the allocation rule μ̄ ∈ R 

N is efficient: 

¯ (N) = 

∑ 

i ∈ N 
μ̄i = 

∑ 

i ∈ N 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) − C i (s ∗j ) 

)
= 

1 

m 

∑ 

j∈ M 

∑ 

i ∈ N 

(
C i (s 0 ) − C i (s ∗j ) 

)
= 

1 

m 

∑ 

j∈ M 

C N (s 0 ) − C N (s ∗j ) 

= v 4 (N) , 

here the fifth equality follows from the fact that s ∗
j 

is an opti- 

al schedule for N for all j ∈ M and hence, C N (s ∗
j 
) = C N (s ∗

j ′ ) for all

j, j ′ ∈ M, j � = j ′ . It remains to prove μ̄(T ) ≥ v 4 (T ) for all T ⊂ N. Let

 � = T ⊂ N be an arbitrary proper coalition, s ∗T ∈ AS 4 ∗ (T ) an opti-

al schedule for coalition T and σ ∗
T 

the unique scheme compatible 

ith s ∗
T 

. Then, 

¯ (T ) = 

∑ 

i ∈ T 
μ̄i = 

∑ 

i ∈ T 

1 

m 

∑ 

j∈ M 

μ j 
i 

= 

∑ 

i ∈ T 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) − C i (s ∗j ) 

)

= 

∑ 

i ∈ T 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) −

⌈
σ j 

0 
(i ) 

m 

⌉
m 

)

= 

1 

m 

∑ 

j∈ M 

(∑ 

i ∈ T 
C i (s 0 ) −

∑ 

i ∈ T 

⌈
σ j 

0 
(i ) 

m 

⌉
m 

)

≥ 1 

m 

∑ 

j∈ M 

(∑ 

i ∈ T 
C i (s 0 ) −

∑ 

i ∈ T 

⌈ (
σ ∗

T 

) j 
(i ) 

m 

⌉ 

m 

)

≥ 1 

m 

∑ 

j∈ M 

(∑ 

i ∈ T 
C i (s 0 ) −

∑ 

i ∈ T 

⌈
C j 

i 
(s ∗T ) 
m 

⌉
m 

)

= 

∑ 

i ∈ T 

1 

m 

∑ 

j∈ M 

(
C i (s 0 ) −

⌈
C j 

i 
(s ∗T ) 
m 

⌉
m 

)

≥
∑ 

i ∈ T 
C i (s 0 ) − C i (s ∗T ) = v 4 (T ) . 

he fourth equality follows from the fact that the unique com- 

atible scheme σ ∗ with s ∗
j 

satisfies ( σ ∗) j = σ j 
0 

and moreover, ac- 

ording to the schedule s ∗
j 
, operations are processed continuously 

n machine j. So, in view of Algorithm 2 (see also Example 3 ),

 i (s ∗
j 
) = 

⌈
σ j 

0 
(i ) 

m 

⌉
m . 

To show the first inequality it is enough to prove that 

 

i ∈ T 

⌈
( σ ∗

T ) 
j 
(i ) 

m 

⌉
≥ ∑ 

i ∈ T 

⌈
σ j 

0 
(i ) 

m 

⌉
for all j ∈ M. Let j ∈ M, ob- 

erve that, with respect to the orders 
(
σ ∗

T 

) j 
and σ j 

0 
, it 

olds that 
∑ 

i ∈ N 

⌈
( σ ∗

T ) 
j 
(i ) 

m 

⌉
= 

∑ 

i ∈ N 

⌈
σ j 

0 
(i ) 

m 

⌉
= 

⌈
1 
m 

⌉
+ 

⌈
2 
m 

⌉
+ 

· · + 

⌈
n 
m 

⌉
. Moreover, since s ∗

T 
∈ AS 4 ∗ (T ) satisfies condi- 

ion (4) , we have 
(
σ ∗

T 

) j 
(i ) ≤ σ j 

0 
(i ) for all i ∈ N\ T and,



A. Atay, P. Calleja and S. Soteras European Journal of Operational Research 295 (2021) 12–21 

c

∑
∑
t

i  

e

n

c

a

i

t

s

q

g

C  

w  

a

5

I

s

p

a

t

t

M

R  

l

(  

p

v

E  

{  

t

 

e

o

r

b

 

t  

C

 

i

H

m  

t

i

s

d

v
 

A

t

o

t

n

d

o

m

t

i

o

w

i

c

c

2

s

t

c  

C  

α

x  

F

c  

t  

k  

f

(

 

S  

t
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onsequently, 
∑ 

i ∈ N\ T 
⌈

( σ ∗
T ) 

j 
(i ) 

m 

⌉
≤ ∑ 

i ∈ N\ T 
⌈

σ j 
0 
(i ) 

m 

⌉
. Then, 

 

i ∈ T 

⌈
( σ ∗

T ) 
j 
(i ) 

m 

⌉
= 

∑ 

i ∈ N 

⌈
( σ ∗

T ) 
j 
(i ) 

m 

⌉
− ∑ 

i ∈ N\ T 
⌈

( σ ∗
T ) 

j 
(i ) 

m 

⌉
≥

 

i ∈ N 

⌈
σ j 

0 
(i ) 

m 

⌉
− ∑ 

i ∈ N\ T 
⌈

σ j 
0 
(i ) 

m 

⌉
= 

∑ 

i ∈ T 

⌈
σ j 

0 
(i ) 

m 

⌉
and we conclude 

hat the first inequality holds. 

The second inequality follows from C 
j 
i 
(s ∗

T 
) ≥

(
σ ∗

T 

) j 
(i ) for all 

 ∈ T and all j ∈ M. Observe that the completion time of the op-

ration of job i on machine j according to the schedule s ∗T can 

ot be strictly smaller than the position of such operation on ma- 

hine j with respect to the compatible scheme σ ∗
T 
, since all oper- 

tions last one unit of time and, moreover, machine j may incur 

dle time. The last inequality follows from Lemma 13 applied to 

he players belonging to coalition T ⊆ N and the feasible schedule, 

 

∗
T 

∈ AS 4 ∗ (T ) ⊂ S . �

In the next corollary, we summarize that an immediate conse- 

uence of Theorem 14 is that the sixteen classes of unit open shop 

ames are balanced. 

orollary 15. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, μ̄(N, M, s 0 ) ∈ C(v k ) for all k ∈ { 1 , 2 , 3 , 4 }
nd μ̄(N, M, s 0 ) ∈ C(v kl ) for all k ∈ { 1 , 2 , 3 , 4 } and all l ∈ { a, b, c} . 

. Non-balancedness results 

In Section 4 , we prove balancedness for unit open shop games. 

n this section, we investigate whether, in general, open shop 

cheduling games are balanced. Here, we provide a counterexam- 

le. To be more precise, to show the following remark we present 

n example with 5 jobs and 3 machines that results in a coopera- 

ive game with an empty core for eight of the sixteen approaches 

o admissible schedules for a coalition introduced in Section 3 . 

oreover, we show that those games are not even superadditive. 

emark 16. Let (N, M, p, α, s 0 ) be an open shop scheduling prob-

em with initial schedule. Then, the associated games (N, v k ) and 

N, v kc ) for all k ∈ { 1 , 2 , 3 , 4 } neither need to be balanced, nor su-

eradditive. 

The necessary arguments to see that Remark 16 holds are pro- 

ided in Example 17 . 

xample 17. Consider (N, M, p, α, s 0 ) with N = { 1 , 2 , 3 , 4 , 5 } , M =
 1 , 2 , 3 } , α1 = 1 , α2 = 5 , α3 = 50 , α4 = α5 = 20 0 0 , and processing

imes as follows: 

p j 
i 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 i f (i, j) ∈ { (1 , 1) , (2 , 1) , (4 , 1) , (5 , 1) , (4 , 2) , (5 , 2) , (2 , 3) , (5 , 3) }
2 i f (i, j) ∈ { (1 , 2) , (4 , 3) } 

120 i f (i, j) ∈ { (3 , 1) , (3 , 2) , (3 , 3) } 
400 i f (i, j) ∈ { (1 , 3) , (2 , 2) } 

In order to provide a clear illustration of the schedules in this 

xample, and due to the big differences in the processing times 

f the operations, in the figures, the operations of the jobs do not 

espect the appropriate proportions, as well as the time line at the 

ottom should be read carefully. The initial schedule, s 0 , is: 

We first show that the game (N, v 1 c ) need not be balanced. No-

ice that C 1 (s 0 ) = 764 , C 2 (s 0 ) = 644 , C 3 (s 0 ) = 364 , C 4 (s 0 ) = 4 and

 (s ) = 3 . 
5 0 

20 
Let T = { 1 } . The optimal schedule for coalition T , s ∗
T 

∈ AS 1 c ∗ (T )

s: 

ere, according to s ∗
T 
, operations are processed continuously on 

achine 3 and, consequently, C 1 (s ∗
T 
) = 524 . On the other hand,

he completion times of the rest of players are the same as 

nitially and hence, condition (c) holds. Moreover, the unique 

cheme compatible with s ∗
T 

is like the initial scheme and con- 

ition (1) holds as well. Then, together with α1 = 1 , we obtain 

 

1 c ({ 1 } ) = 764 − 524 = 240 . 

Now, let S = { 2 , 3 , 4 , 5 } . An optimal schedule for coalition S, s ∗
S 

∈
S 1 c ∗ (S) , is: 

Observe that the best alternative for S is to process all opera- 

ions continuously on machine 2 diminishing the completion time 

f player 2. Notice that α3 , α4 and α5 are very high compared 

o α2 but, however, the completion times of jobs 4 and 5 can 

ot be reduced, while the completion time of 3 can hardly be re- 

uced. Here, C 2 (s ∗
S 
) = 524 and the completion times for the rest 

f members of coalition S are equal to the initial ones. Further- 

ore, the completion time of player 1 diminishes and then condi- 

ion (c) holds, and the unique scheme compatible with s ∗
S 

is as the 

nitial one satisfying condition (1) . Then, together with α2 = 5 , we 

btain v 1 c ({ 2 , 3 , 4 , 5 } ) = 5(644 − 524) = 600 . 

Finally, an optimal schedule for the grand coalition N, s ∗, is: 

Roughly speaking, the high values of α3 , α4 and α5 , together 

ith the fact that there is a small room for, if possible, reduc- 

ng the completion times of jobs 3, 4 and 5, enforces the grand 

oalition to choose between processing the operation (3,2) on ma- 

hine 2 first (as in s ∗S ), diminishing the completion time of player 

, or processing the operation (3,3) on machine 3 first (as in 

 

∗
T 

), diminishing the completion time of player 1. Since α2 is five 

imes α1 , the first of these two alternatives is better by means of 

ost savings. Here, C 1 (s ∗) = 644 , C 2 (s ∗) = 522 , C 3 (s ∗) = 362 , while

 4 (s ∗) = C 4 (s 0 ) and C 5 (s ∗) = C 5 (s 0 ) . Therefore, and since α1 = 1 ,

2 = 5 , and α3 = 50 we obtain v 1 c (N) = 120 + 610 + 100 = 830 . 

Hence, there does not exist an allocation x ∈ R 

5 that satisfies 

 (N) = 830 , x 1 ≥ 240 , and x 2 + x 3 + x 4 + x 5 ≥ 600 , and C(v 1 c ) = ∅ .
urthermore, in view of Proposition 6 , given an arbitrary proper 

oalition T ⊂ N, it holds that v 1 c (T ) is smaller than or equal to

he worth of this coalition in the games (N, v k ) and (N, v kc ) for all

 ∈ { 1 , 2 , 3 , 4 } , while, the worth of the grand coalition is the same

or these eight games. Then, we conclude that none of the games 

N, v k ) and (N, v kc ) with k ∈ { 1 , 2 , 3 , 4 } is balanced. 

To finish, observe that v 1 c (T ) + v 1 c (S) > v 1 c (T ∪ S) = v 1 c (N) and

 ∩ T = ∅ . Thus, the game (N, v 1 c ) is neither superadditive, nor are

he games (N, v k ) and (N, v kc ) for all k ∈ { 1 , 2 , 3 , 4 } . 

Unfortunately, we can not use Example 17 to extend the non- 

alancedness result to the games (N, v kl ) for k ∈ { 1 , 2 , 3 , 4 } and

 ∈ { a, b} that can also be associated to an open shop scheduling

roblem with initial schedule. It is important to point out that 

he worth of the coalition T = { 1 } is no longer positive with these

pproaches. Then, whether or not the non-balancedness result in 
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emark 16 can be extended to these eight different games, remains 

n open question. 

To finish, we provide a counterexample to illustrate that fur- 

her relaxations on the admissible rearrangements lead to games 

hat also violate balancedness. To be precise, we wonder if for 

nit open shop scheduling games, balancedness holds if we no 

onger impose any condition on the associated schemes to ob- 

ain admissible schedules for a coalition. Let T ⊂ N, we now ad- 

it any schedule for T except if it hurts players in N \ T . Let

S l (T ) for l ∈ { a, b, c} be the set of admissible rearrangements for

 coalition T ⊂ N that satisfies only condition (l) , but not neces- 

arily (1) –(4) . For l ∈ { a, b, c} , by (N, v l ) we denote the game asso-

iated with an open shop scheduling problem with initial sched- 

le, (N, M, p, α, s 0 ) , where the set of admissible rearrangements is

S l (T ) for any ∅ � = T ⊂ N. The relation among such games is stated

n the next proposition. 

roposition 18. Let (N, M, p, α, s 0 ) be an open shop scheduling prob-

em with initial schedule. Then, it holds 

 

a (N) = v b (N) = v c (N) 

v a (T ) ≤ v b (T ) ≤ v c (T ) for all T ⊂ N. 

Next, we remark the non-balancedness result. 

emark 19. Let (N, M, s 0 ) be a unit open shop scheduling problem

ith initial schedule. Then, the associated games (N, v l ) for all l ∈
 a, b, c} need not be balanced. 

In view of Proposition 18 , it is enough to show that there 

s (N, M, s 0 ) such that (N, v a ) is not balanced, as depicted in

xample 20 . 

xample 20. Consider (N, M, s 0 ) with N = { 1 , 2 , 3 } , M = { 1 , 2 } , and

he initial schedule, s 0 , as follows: 

m 1 1 2 3 

m 2 1 3 2 

Let T = { 2 } . Then, the optimal schedule for T , s ∗
T 

∈ AS a ∗(T ) , is: 

m 1 1 2 3 

m 2 2 1 3 

Hence, v a ({ 2 } ) = 3 . Let S = { 3 } , the optimal schedule for S, s ∗
S 

∈
S a ∗(S) , is: 

m 1 1 2 3 

m 2 3 1 2 

and hence, v a ({ 3 } ) = 1 . Finally, the optimal schedule for the grand

oalition N, s ∗, is: 

m 1 1 2 3 

m 2 2 1 3 

Hence, v a (N) = 3 , and there does not exist an allocation x ∈
 

3 that satisfies x 1 + x 2 + x 3 = 3 , x 2 ≥ 3 , x 3 ≥ 1 , and x 1 ≥ v a ({ 1 } )
ince, obviously v a ({ 1 } ) = 0 . Therefore, C(v a ) = ∅ . �
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