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 A B S T R A C T

Cooperative game theory explores how to fairly allocate the joint value generated by a group of decision-
makers, but its application is compromised by the large number of counterfactuals needed to compute the 
value of all coalitions, a problem made even more complicated when externalities are present. We provide 
a theoretical foundation for a simplification used in many applications, in which the value of a coalition is 
computed assuming that they either select before or after the complement set of agents, providing optimistic 
and pessimistic values on what a coalition should receive. In a vast set of problems exhibiting what we call 
feasibility externalities, we show that ensuring a coalition does not receive more than its optimistic value is 
always at least as difficult as ensuring it receives its pessimistic value. Furthermore, under the presence of 
negative externalities, we establish the existence of stable allocations that respect these bounds. Finally, we 
examine well-known optimization-based applications and their corresponding cooperative games to show how 
our results lead to new insights and allow the derivation of further results from the existing literature.
1. Introduction

Cooperative transferable utility (TU) games provide a powerful 
framework for analyzing collaboration among decision-makers, offering 
tools to allocate the value or cost of joint projects in a fair and 
stable way. This paper adds to the stream of research on operations 
research games emerging from scenarios where a coalition of players 
must solve a shared optimization problem.1 These cooperative tools 
have been applied extensively across a broad range of operations 
research applications, including the distribution of revenues in stream-
ing platforms (Schlicher et al., 2024; Bergantiños & Moreno-Ternero, 
2025a; Gonçalves-Dosantos et al., 2025), cost-sharing in manufacturing 
(Atay et al., 2021; Alon & Anily, 2023; Munich, 2024), international 
kidney exchange programs (Benedek et al., 2025), resource allocation 
problem (Rahmoune et al., 2024), claims problems (O’Neill, 1982), 
airport cost allocation (Littlechild & Owen, 1973), and joint produc-
tion problems (Moulin, 1990; Moulin & Shenker, 1992). However, the 
practical application of cooperative game theory becomes significantly 
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1 See Borm et al. (2001) for a survey and Curiel (2013) for an overview of this literature.

more complex in the presence of externalities—when the actions of 
players outside a coalition influence what that coalition can achieve.

In particular, when assessing the value of a coalition 𝑆 ⊆ 𝑁 , the 
assumptions we make about the behavior of the complement 𝑁 ⧵𝑆 play 
a central role. Are the outsiders cooperating among themselves? Are 
they competing with or actively trying to harm 𝑆? A formal treatment 
of these possibilities would require using partition form games, which 
requires building a very large number of counterfactuals, compromising 
their practical use.

In many applications based on an optimization problem, such as 
queueing (Chun, 2016), minimum cost spanning trees (Bird, 1976), or 
river-sharing problems (Ambec & Sprumont, 2002), simpler assump-
tions have been adopted: namely, that the coalition either moves before 
or after the rest of the players. In this paper, we provide a general 
framework that unifies and justifies these modeling choices through 
the concept of feasibility externalities, where the feasible action set of 
a coalition depends on the actions taken by outsiders. Our model not 
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only provides a general framework for existing models but also offers 
a foundation for analyzing new classes of operations research games 
arising from an underlying joint optimization problem.

We distinguish between negative and positive feasibility externali-
ties. With negative externalities, the actions of non-members reduce the 
feasible set available to a coalition—so a worst-case value arises when 
the coalition moves last, and a best-case value arises when it moves 
first. Conversely, under positive externalities, where the actions of 
non-members expand a coalition’s feasible set, the worst-case scenario 
corresponds to the coalition moving first, and the best-case one to it 
moving last. These two perspectives yield natural lower and upper 
bounds on what a coalition can achieve, forming the basis of what we 
call the pessimistic and optimistic value functions.

We then explore the core (Gillies, 1959) of the pessimistic game 
and the anti-core (see, for instance, Oishi et al., 2016) of the optimistic 
game, identifying allocations that respectively ensure coalitions receive 
at least their lower bound or no more than their upper bound. A 
key result is that the anti-core of the optimistic game is always a 
subset of the core of the pessimistic game. This inclusion provides a 
powerful simplification: ensuring that no coalition receives more than 
its optimistic value is always at least as hard as guaranteeing it receives 
its pessimistic value—and in the case of negative externalities, such 
stable allocations are always guaranteed to exist.

By examining applications like queueing and minimum cost span-
ning tree problems, we show that our approach allows to recover 
natural concepts studied in these particular problems. For instance, we 
obtain, from a different perspective, the irreducible core for minimum 
cost spanning tree problems. Additionally, we provide a condition 
to identify applications in which the pessimistic and optimistic func-
tions form dual games. Examples include well-studied problems like 
bankruptcy (O’Neill, 1982) and airport cost allocation (Littlechild & 
Owen, 1973). The condition is linked to the optimization itself: if a 
coalition 𝑆 choosing first and its complement 𝑁 ⧵ 𝑆 choosing last 
always yields an efficient outcome, then the two games are dual, and 
there is no gain in applying the optimistic and pessimistic approaches 
separately.

1.1. Related literature

We provide here a brief discussion of how our optimistic and pes-
simistic coalitional value functions compare to other concepts proposed 
in the literature.

Different methods have been proposed to determine the value of a 
coalition starting with the 𝛼 and 𝛽 games (Shubik, 1982; pp. 136–138). 
The alpha game corresponds to maximin (a coalition maximizes its 
revenues after the complement set has tried to minimize it) while the 
beta game corresponds to minimax (a coalition first tries to maximize 
its revenues, with the complement set then trying to minimize it). Full 
definitions and links to our contexts are provided in Appendix, but to 
summarize, the beta approach corresponds to a coalition always picking 
first (and is thus sometimes optimistic and sometimes pessimistic de-
pending on the sign of the externalities), while the alpha game provides 
seemingly unreasonably pessimistic values, in which the complement 
set of agents goes out of their way to hurt the coalition in question. By 
opposition, our approach is restricted to credible threats, in which the 
complement set of agents maximizes its own benefits.

Alternative approaches model strategic interactions between a coali-
tion and the complement set through different equilibrium concepts. 
For example, Chander and Tulkens (1997) define a value function based 
on a Nash equilibrium between coalition 𝑆 and singleton opponents in 
𝑁⧵𝑆, while Huang and Sjöström (2003) allow 𝑁⧵𝑆 to form its optimal 
partition. Similarly, the recursive core introduced by Kóczy (2007) 
adopts the idea that deviating agents act in their own self-interest and 
are free to make their decisions, without determining their partition 
in advance. How the complement coalition would reorganize itself if 
a coalition breaks from the grand coalition is a frequent question of 
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interest, with partition function form games (Kóczy, 2018) consigning 
all such possibilities.

Optimistic and pessimistic assumptions on the behavior of the com-
plement set are common, for example in the coalition formation litera-
ture. Our idea that the complement set is using a strategy that is optimal 
for them, instead of trying to hurt 𝑆, is also found in Ray and Vohra 
(1997). The non-cooperative interplay between 𝑆 and 𝑁 ⧵ 𝑆 is found 
notably in Ichiishi (1981). This strand of literature seeks a solution 
concept that consistently addresses the strategic effects of externalities 
in the coalition formation process, whereas our aim is to provide a 
unified model for TU games based on joint optimization problems, with 
the ultimate goal of providing fair and stable allocations.

Closer to our perspective, Curiel and Tijs (1991) introduced two 
operators, minimarg and maximarg, which determine each coalition’s 
marginal contribution based on the worst and the best possible order 
of agents, respectively. The minimarg assigns the smallest marginal 
contribution, while the maximarg assigns the largest, embodying pes-
simistic and optimistic viewpoints, respectively. Iteratively applying 
these operators to a game leads to a convex and concave game in 
the limit, with these games being dual to each other. Our approach 
differs in that they build these operators from a given value game, 
while we consider the underlying problem of how to define the games 
themselves.

1.2. Organization of this paper

The paper is organized as follows. Section 2 provides some pre-
liminaries on TU games. Section 3 introduces the framework and 
defines the optimistic and pessimistic value functions. In Section 4 we 
provide our main results: (i) an inclusion result between the set of 
allocations making sure that no coalition gets more than the optimistic 
upper bounds and the one guaranteeing the pessimistic lower bounds, 
and (ii) the guaranteed existence of such allocations when feasibility 
externalities are negative. In Section 5 we apply our framework to a 
wide range of applications that have been well-studied in the literature. 
Finally, Section 6 concludes the paper with further extensions.

2. Preliminaries

A cooperative game with transferable utility (or TU game) is defined 
by a pair (𝑁, 𝑣) where 𝑁 is the (finite) set of agents and 𝑣 is a value 
function that assigns the value 𝑣(𝑆) to each coalition 𝑆 ⊆ 𝑁 with 
𝑣(∅) = 0. The number 𝑣(𝑆) is the value of the coalition. Whenever no 
confusion may arise as to the set of players, we will identify a TU game 
(𝑁, 𝑣) with its value function 𝑣.

Given a game 𝑣, an allocation is a tuple 𝑥 ∈ R𝑁  representing players’ 
respective allotment. The total payoff of a coalition 𝑆 is denoted by 
𝑥(𝑆) =

∑

𝑖∈𝑆 𝑥𝑖 with 𝑥(∅) = 0. An allocation is efficient if 𝑥(𝑁) = 𝑣(𝑁), 
and coalitionally rational if 𝑥(𝑆) ≥ 𝑣(𝑆) for all 𝑆 ⊆ 𝑁 .

An allocation is said to be in the core of 𝑣 if it is efficient and 
coalitionally rational. Then, the core of the game 𝑣 is the set of all such 
allocations:

(𝑣) =
{

𝑥 ∈ R𝑁 ∶ 𝑥(𝑆) ≥ 𝑣(𝑆) for all 𝑆 ⊂ 𝑁 and 𝑥(𝑁) = 𝑣(𝑁)
}

. An 
allocation is said to be in the anti-core of 𝑣 if it is efficient and for all 
coalitions the reversed coalitional rationality inequalities hold. Then, 
the anti-core of the game 𝑣 is the set of all such allocations: (𝑣) =
{

𝑥 ∈ R𝑁 ∶ 𝑥(𝑆) ≤ 𝑣(𝑆) for all 𝑆 ⊂ 𝑁 and 𝑥(𝑁) = 𝑣(𝑁)
}

.
Convexity and concavity (Shapley, 1971) are conditions that have 

been extensively studied to prove balancedness. A game (𝑁, 𝑣) is said 
to be convex if 𝑣(𝑇 ∪ {𝑖}) − 𝑣(𝑇 ) ≥ 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) for all 𝑖 ∈ 𝑁 and 
𝑆 ⊆ 𝑇 ⊆ 𝑁 ⧵{𝑖}. A game (𝑁, 𝑣) is said to be concave if 𝑣(𝑇 ∪{𝑖})−𝑣(𝑇 ) ≤
𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) for all 𝑖 ∈ 𝑁 and 𝑆 ⊆ 𝑇 ⊆ 𝑁 ⧵ {𝑖}.

The Shapley value (Shapley, 1953) is a single-valued solution that 
has interesting fairness properties. It is the weighted sum of the agents’ 
marginal contributions to all coalitions. Formally, given a game (𝑁, 𝑣), 
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the Shapley value 𝑆ℎ(𝑣) assigns to each agent 𝑖 ∈ 𝑁 the payoff 𝑆ℎ𝑖(𝑣) =
∑

𝑆⊆𝑁⧵{𝑖}
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|! [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)].
A game (𝑁, 𝑣∗) is the dual game of the game (𝑁, 𝑣) if 𝑣∗(𝑆) =

𝑣(𝑁) − 𝑣(𝑁 ⧵ 𝑆) for all 𝑆 ⊆ 𝑁 .
For dual games, it is well-known that the anti-core of 𝑣 coincides 

with the core of 𝑣∗, and vice versa. 

Proposition 1.  If 𝑣 and 𝑣∗ are dual, then (𝑣) = (𝑣∗) and (𝑣∗) = (𝑣).

3. The model

We build a model that allows for what we call feasibility externalities, 
where the actions of others do not have a direct impact on the revenues 
one receives, but these actions might affect the set of actions one can 
take.

Formally, each agent 𝑖 ∈ 𝑁 can take actions, with the set of possible 
actions defined as A𝑖. For each agent, the null action ⊖𝑖 ∈ A𝑖 means 
that one possible action is to stay inactive. For each 𝑆 ⊆ 𝑁 , we define 
as A𝑆 =

⨉

𝑖∈𝑆 A𝑖 the set of actions jointly available to 𝑆 and A ≡ A𝑁 .
When agents choose their actions, some actions might not be avail-

able. We thus define the feasible set, which depends on the actions of 
other agents. More precisely, for all 𝑆 ⊆ 𝑁 and all 𝑎𝑁⧵𝑆 ∈ A𝑁⧵𝑆 , 
𝑓𝑆 (𝑎𝑁⧵𝑆 ) ⊆ A𝑆 represents the set of actions jointly feasible for 𝑆. We 
suppose that these sets are always non-empty, since for any coalition, 
all agents being inactive, ⊖𝑆 , is always available as an action. Since the 
coalition 𝑁 includes all players, we write 𝑓𝑁  instead of 𝑓𝑁 (⊖∅). Let 𝑓
represent the set of all such feasibility functions for all coalitions 𝑆. We 
impose a feasibility complementarity condition: for all 𝑆 ⊂ 𝑁 and 
𝑎𝑁⧵𝑆 ∈ A𝑁⧵𝑆 , 𝑎𝑆 ∈ 𝑓𝑆 (𝑎𝑁⧵𝑆 ) if and only if 

(

𝑎𝑆 , 𝑎𝑁⧵𝑆
)

∈ 𝑓𝑁 . In words, 
we assume that if a coalition selects first and the remaining agents 
select next, the combination of actions is jointly feasible for the grand 
coalition. Inversely, a set of feasible actions for the grand coalition must 
be such that if 𝑁 ⧵ 𝑆 picks their actions in that set first, the remaining 
actions are feasible for 𝑆. The condition is mild and satisfied by all the 
applications in this paper. Consider the following example that fails the 
condition: Both 𝑆 and 𝑁 ⧵ 𝑆 have a fixed budget to spend, but each 
dollar spent by 𝑁 ⧵𝑆 decreases the budget for 𝑆, while spending by 𝑆
has no impact on 𝑁 ⧵ 𝑆. Suppose that 𝑆 picks first and spends all of 
its budget, then 𝑁 ⧵ 𝑆 does the same. Then, the combination of their 
actions is not feasible for the grand coalition.

For each agent 𝑖 ∈ 𝑁 we have a revenue function 𝑅𝑖 ∶ A𝑖 → R. Let 
𝑅 represent the set of individual revenue functions. Given that we often 
have coalitions maximizing their joint revenues, if coalition 𝑆 chooses 
the set of actions 𝑎𝑆 , we abuse notation and write 𝑅𝑖(𝑎𝑆 ) instead of 
𝑅𝑖((𝑎𝑆 )𝑖) for all 𝑖 ∈ 𝑆.

The grand coalition faces an optimization problem that we generally 
write as max𝑎𝑁∈𝑓𝑁

∑

𝑖∈𝑁 𝑅𝑖(𝑎𝑁 ). We define a problem 𝑃  as (A, 𝑓 , 𝑅), 
which describes the set of actions, the feasibility sets, and the revenue 
functions. We suppose that the maximization problem induced by 𝑃 =
(A, 𝑓 , 𝑅) has a solution. Let  be the set of all such problems (for all 
A, 𝑓 , 𝑅).

Example 2.  Suppose a simple queueing problem. All agents in 𝑁 have 
one single job to be processed on a machine. The machine can process 
one job per period, and agents have linear waiting costs: if agent 𝑖’s job 
is processed in period 𝑡, he suffers a cost of 𝑡 ×𝑤𝑖, where 𝑤𝑖 ≥ 0 is his 
personal waiting cost parameter.

In this context, we can set A𝑖 = {1,… , |𝑁|} to be the set of periods 
in which 𝑖’s job could be processed.2 Then, for any 𝑆 ⊆ 𝑁 , 𝑓𝑆 (⊖𝑁⧵𝑆 )
represents what is jointly feasible for 𝑆 if 𝑁 ⧵ 𝑆 is inactive, i.e., if 
their jobs are not processed. We then have that 𝑓𝑆 (⊖𝑁⧵𝑆 ) is a function 

2 More precisely, 𝑎𝑖 ∈ A𝑖 means that the jobs start processing in period 𝑎𝑖−1
and is completely processed at time 𝑎 .
𝑖
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𝜃𝑆 ∶ 𝑆 → A𝑆 such that 𝜃𝑆𝑖 ≠ 𝜃𝑆𝑗  for all 𝑖, 𝑗 different in 𝑆. In words, no 
two agents in 𝑆 can be assigned the same processing period.

For 𝑎𝑁⧵𝑆 ≠ ⊖𝑁⧵𝑆 , we have the additional constraint that 𝜃𝑆𝑖 ≠ 𝑎𝑗
for all 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑁 ⧵ 𝑆. Stated otherwise, the agents in 𝑆 cannot 
be assigned to a period already occupied by an agent in 𝑁 ⧵ 𝑆.

Finally, we have 𝑅𝑖(𝑎𝑖) = −𝑤𝑖𝑎𝑖 for all 𝑖 ∈ 𝑁 , i.e., each agent has 
a disutility 𝑤𝑖 per period waiting before the job is processed.3 We can 
thus rewrite the problem of the grand coalition as max𝜃∈𝛩(𝑁)

∑

𝑖∈𝑁 −𝜃𝑖
𝑤𝑖 where 𝛩(𝑁) is the set of bijections from 𝑁 to {1,… , |𝑁|}.

Example 3.  We consider agents that share a joint production tech-
nology for a homogeneous good, that they consume in discrete units. 
The production technology is represented by a non-decreasing function 
𝐶 ∶ N → R+ that assigns a cost to any quantity of good produced, with 
𝐶(0) = 0. For each 𝑘 ∈ 𝑁 , 𝑘 > 0, let 𝑐𝑘 = 𝐶(𝑘)−𝐶(𝑘−1) be the marginal 
cost of the 𝑘th unit. Each agent must decide how much he wants to 
consume and how much to pay.

In this context we set A𝑖 = (𝑞𝑖, 𝑟𝑖) where 𝑞𝑖 ∈ N is the amount 
consumed and 𝑟𝑖 ∈ N𝑞𝑖  assigns to each unit consumed a marginal cost 
that is paid by the agent. In particular, 𝑟𝑖𝑘 indicates which marginal 
cost agent 𝑖 pays for its 𝑘th unit. We write ⊖𝑖 = (0, ∅).

Then, for any 𝑆 ⊆ 𝑁 , 𝑓𝑆 (⊖𝑁⧵𝑆 ) represents what is jointly feasible 
for 𝑆 if 𝑁 ⧵ 𝑆 is inactive, i.e., if they do not consume any good 
and pay anything. We then have that 𝑓𝑆 (⊖𝑁⧵𝑆 ) = {(𝑞𝑆 , {𝑟𝑖}𝑖∈𝑆 ) ∣
∑

𝑖∈𝑆
𝑞𝑖>0

∑𝑞𝑖
𝑘=1 𝑐𝑟𝑖𝑘 ≥ 𝐶

(
∑

𝑖∈𝑆 𝑞𝑖
)

}. In words, 𝑓𝑆 is a budget set in which 
the coalition must collect enough money to cover for the cost of the 
units it wants to consume. For instance, if we have strictly increasing 
marginal costs, then coalition 𝑆 can decide to consume no units and 
pay nothing, consume one unit and pay any of the marginal costs (as 
they are all at least as large as 𝑐1), consume two units and pay any two 
marginal costs (it cannot twice pay 𝑐1, but any other pair is feasible), 
etc. Of course, if it decides to consume 𝑘 units, it is optimal to pay for 
the first 𝑘 marginal costs, i.e., just cover the cost of the units consumed.

For 𝑎𝑁⧵𝑆 = (𝑞𝑁⧵𝑆 , {𝑟𝑖}𝑖∈𝑁⧵𝑆 ) ≠ ⊖𝑁⧵𝑆 , we have that

𝑓𝑆 (𝑞𝑁⧵𝑆 , {𝑟𝑖}𝑖∈𝑁⧵𝑆 ) =

⎧

⎪

⎨

⎪

⎩

(𝑞𝑆 , {𝑟𝑖}𝑖∈𝑆 ) ∣
∑

𝑖∈𝑆
𝑞𝑖>0

𝑞𝑖
∑

𝑘=1
𝑐𝑟𝑖𝑘 +

∑

𝑖∈𝑁⧵𝑆
𝑞𝑖>0

𝑞𝑖
∑

𝑘=1
𝑐𝑟𝑖𝑘

≥ 𝐶

(

∑

𝑖∈𝑆
𝑞𝑖 +

∑

𝑖∈𝑁⧵𝑆
𝑞𝑖

)⎫

⎪

⎬

⎪

⎭

.

In words, the marginal costs paid by agents in 𝑆 must be enough to 
cover for the cost of the total number of units consumed, net of what 
was paid by 𝑁 ⧵ 𝑆. Note that if 𝑁 ⧵ 𝑆 just covered the cost of their 
consumption, then we need ∑ 𝑖∈𝑆

𝑞𝑖>0

∑𝑞𝑖
𝑘=1 𝑐𝑟𝑖𝑘 ≥ 𝐶

(

∑

𝑖∈𝑆 𝑞𝑖 +
∑

𝑖∈𝑁⧵𝑆 𝑞𝑖
)

−

𝐶
(

∑

𝑖∈𝑁⧵𝑆 𝑞𝑖
)

.
Finally, we have 𝑅𝑖(𝑞𝑖, 𝑟𝑖) = 𝑢𝑖(𝑞𝑖) −

∑𝑞𝑖
𝑘=1 𝑐𝑟𝑖𝑘  where 𝑢𝑖 ∶ N → R is a 

non-decreasing utility function such that 𝑢𝑖(0) = 0.

3.1. Externalities

We say that a problem exhibits negative externalities if for all 
𝑖 ∈ 𝑆 ⊆ 𝑁 and all 𝑎𝑁⧵𝑆 ∈ 𝑓𝑁⧵𝑆 (⊖𝑆 ), we have 𝑓𝑆 (𝑎𝑁⧵𝑆 ) ⊆ 𝑓𝑆 (⊖𝑁⧵𝑆 ). 
Let − be the set of all such problems.

We say that a problem exhibits positive externalities if for all 
𝑖 ∈ 𝑆 ⊆ 𝑁 and all 𝑎𝑁⧵𝑆 ∈ 𝑓𝑁⧵𝑆 (⊖𝑆 ), we have 𝑓𝑆 (𝑎𝑁⧵𝑆 ) ⊇ 𝑓𝑆 (⊖𝑁⧵𝑆 ). 
Let + be the set of all such problems.

3 If 𝑎𝑖 = ⊖𝑖, then 𝑅𝑖 = −𝐷, with 𝐷 arbitrarily large, as the agent’s job is 
not processed.
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3.2. Defining cooperative games

It is not always trivial to determine what value to assign to a 
coalition. In the presence of externalities, the value depends on assump-
tions we make about the behavior of agents external to the coalition 
considered.

In many applied problems, as queueing and minimum cost spanning 
tree problems, a simple approach taken consists of coalition 𝑆 choosing 
either first or after 𝑁 ⧵ 𝑆. If it chooses first, then we have that4

𝑣𝐹 (𝑆) = max
𝑎𝑆∈𝑓𝑆 (⊖𝑁⧵𝑆 )

∑

𝑖∈𝑆
𝑅𝑖(𝑎𝑆 ).

If 𝑆 chooses after 𝑁 ⧵ 𝑆, we specify that the objective of 𝑁 ⧵
𝑆 is not to harm 𝑆, but rather to maximize its own revenues. Let 
𝜇𝑆 = argmax𝑎𝑆∈𝑓𝑆 (⊖𝑁⧵𝑆 )

∑

𝑖∈𝑆 𝑅𝑖(𝑎𝑆 ) be the set of maximizers when 𝑆
is choosing first. Since the feasible set – and thus the payoff 𝑆 might 
receive after 𝑁 ⧵ 𝑆 has chosen – depends on which maximizer 𝑁 ⧵ 𝑆
has picked, we define minimum and maximum values as follows:
𝑣𝐿min(𝑆) = max

𝑎𝑆∈𝑓𝑆 (𝑎𝑁⧵𝑆 )
min

𝑎𝑁⧵𝑆∈𝜇𝑁⧵𝑆

∑

𝑖∈𝑆
𝑅𝑖(𝑎𝑆 )

and

𝑣𝐿max(𝑆) = max
𝑎𝑆∈𝑓𝑆 (𝑎𝑁⧵𝑆 )

max
𝑎𝑁⧵𝑆∈𝜇𝑁⧵𝑆

∑

𝑖∈𝑆
𝑅𝑖(𝑎𝑆 ).

In some applications, the maximizer chosen by 𝑁 ⧵𝑆 has no impact 
on 𝑆, in which case we abuse notation and simply write 𝑣𝐿.

We illustrate with the following example.

Example 4.  We reconsider Example  3 and now suppose that 𝑁 =
{1, 2, 3} and that the common technology of production exhibits de-
creasing returns to scale. We describe utility functions by vectors of 
marginal utilities and the cost function by a vector of marginal costs.

More precisely, agent 1 has marginal utilities of 6 for the first unit, 
3 for the second, and zero afterwards. Agent 2 has marginal utility of 
12 for the first unit, 6 for the second, and zero afterwards. Agent 3 
has marginal utility of 12 for the first unit, 8 for the second, 4 for the 
third, and zero afterwards. The marginal cost of producing the 𝑥th unit 
is 𝑥 − 1.

We obtain the following values for the games we have defined:

 𝑆 𝑣𝐿min(𝑆) 𝑣𝐿max(𝑆) 𝑣𝐹 (𝑆) 
 {1} 1 2 8  
 {2} 9 9 17  
 {3} 11 13 21  
 {1, 2} 12 12 21  
 {1, 3} 17 17 24  
 {2, 3} 24 24 32  
 {1, 2, 3} 34 34 34  

We explain some of these values in detail. Starting with 𝑣𝐹 , it is obvious 
that a coalition picking first will always choose to pay for the first 𝐾
marginal costs if it consumes 𝐾 units. First, consider 𝑣𝐹 ({2, 3}). The 
coalition chooses first, and faces low marginal costs. If it produces 5 
units (2 for agent 2 and 3 for agent 3), it obtains 12−0+12−1+8−2+
6 − 3 + 4 − 4 = 32. If it produces 4 units (2 for agent 2 and 2 for agent 
3), it obtains 12 − 0 + 12 − 1 + 8 − 2 + 6 − 3 = 32. It is easy to see that 
any other combination yields less net revenues. Thus, 𝑣𝐹 ({2, 3}) = 32
but 𝜇{2,3} contains two elements: either the coalition consumes 4 or 5 
units, each time paying the first marginal costs.

We now move to 𝑣𝐿𝑚𝑖𝑛 and 𝑣𝐿𝑚𝑎𝑥. Consider 𝑣𝐿min({1}). We suppose that 
coalition {2, 3} has selected an action that maximizes its own revenue, 
which means that it paid for the first 𝐾 marginal costs if it consumed 
𝐾 units. For {1} the worst maximizer of {2, 3} is for them to consume 

4 We suppose, in this problem and in subsequent ones, that the optimization 
problem for coalition 𝑆 ⊂ 𝑁 has a solution.
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5 units (and pay the first five marginal costs). Agent 1 then faces a 
marginal cost of 5 on the first unit consumed, 6 on the second, etc. 
Given that, it is optimal to consume a single unit for a net revenue of 
6−5 = 1 = 𝑣𝐿min({1}). Moving to 𝑣𝐿max({1}), we now suppose that coalition 
{2, 3} has picked its maximizer that is most favorable to agent 1, here 
consuming 4 units. Thus, agent 1 is now facing a marginal cost of 4 
on the first unit consumed, 5 on the second, etc. It is still optimal to 
consume a single unit, but the net revenue is now 6−4 = 2 = 𝑣𝐿max({1}).

The following proposition is immediate.

Proposition 5. 
1. For all 𝑃 ∈ − and all 𝑆 ⊆ 𝑁 , 𝑣𝐿𝑚𝑖𝑛(𝑆, 𝑃 ) ≤ 𝑣𝐿𝑚𝑎𝑥(𝑆, 𝑃 ) ≤ 𝑣𝐹 (𝑆, 𝑃 ).
2. For all 𝑃 ∈ + and all 𝑆 ⊆ 𝑁 , 𝑣𝐹 (𝑆, 𝑃 ) ≤ 𝑣𝐿𝑚𝑖𝑛(𝑆, 𝑃 ) ≤ 𝑣𝐿𝑚𝑎𝑥(𝑆, 𝑃 ).

We can see in the previous result that with negative externalities, 
choosing first is a favorable scenario, and offers an upper bound, while 
choosing last is an unfavorable scenario that offers a lower bound. The 
ranking is flipped with positive externalities. Thus, it is natural to use 
the following definitions for the optimistic and pessimistic games.

Definition 6. 
1. For all 𝑃 ∈ −, 𝑣𝑝(⋅, 𝑃 ) ≡ 𝑣𝐿𝑚𝑖𝑛(⋅, 𝑃 ) and 𝑣𝑜(⋅, 𝑃 ) ≡ 𝑣𝐹 (⋅, 𝑃 ).
2. For all 𝑃 ∈ +, 𝑣𝑝(⋅, 𝑃 ) ≡ 𝑣𝐹 (⋅, 𝑃 ) and 𝑣𝑜(⋅, 𝑃 ) ≡ 𝑣𝐿𝑚𝑎𝑥(⋅, 𝑃 ).

4. Main results

We provide our main results. We first establish a nice feature of 
the first/last games. If we use them as lower/upper bounds, then we 
immediately obtain an inclusion result: the set of allocations making 
sure that nobody receives more than their upper bounds is a subset of 
the set of allocations making sure that nobody receives less than their 
lower bounds.

Theorem 7.  For all 𝑃 ∈  , we have that
(i) 

(

𝑣𝐿𝑚𝑎𝑥(⋅, 𝑃 )
)

⊆ 
(

𝑣𝐹 (⋅, 𝑃 )
)

;
(ii) 

(

𝑣𝐹 (⋅, 𝑃 )
)

⊆ 
(

𝑣𝐿𝑚𝑖𝑛(⋅, 𝑃 )
)

.

Proof.  Fix 𝑃 , and thus write 𝑣𝐹 (𝑆), 𝑣𝐿𝑚𝑖𝑛(𝑆) and 𝑣𝐿𝑚𝑎𝑥(𝑆) instead of 
𝑣𝐹 (𝑆, 𝑃 ), 𝑣𝐿𝑚𝑖𝑛(𝑆, 𝑃 ) and 𝑣𝐿𝑚𝑎𝑥(𝑆, 𝑃 ). Let 𝑣(𝑁) ≡ max𝑎𝑁∈𝑓𝑁

∑

𝑖∈𝑁 𝑅𝑖(𝑎𝑁 ). 
Notice that 𝑣𝐹 (𝑁) = 𝑣𝐿𝑚𝑖𝑛(𝑁) = 𝑣𝐿𝑚𝑎𝑥(𝑁) = 𝑣(𝑁).

We start with part (i).
An allocation 𝑥 ∈ 

(

𝑣𝐿𝑚𝑎𝑥
) if 𝑣(𝑁)−𝑣𝐿𝑚𝑎𝑥(𝑁 ⧵𝑆) ≤ 𝑥(𝑆) ≤ 𝑣𝐿𝑚𝑎𝑥(𝑆) for 

all 𝑆 ⊆ 𝑁 . An allocation 𝑥 ∈ 
(

𝑣𝐹
) if 𝑣𝐹 (𝑆) ≤ 𝑥(𝑆) ≤ 𝑣(𝑁) − 𝑣𝐹 (𝑁 ⧵𝑆)

for all 𝑆 ⊆ 𝑁 . It is easy to see that  (

𝑣𝐿𝑚𝑎𝑥
)

⊆ 
(

𝑣𝐹
) if and only 

if 𝑣(𝑁) ≥ 𝑣𝐿max(𝑆) + 𝑣𝐹 (𝑁 ⧵ 𝑆) for all 𝑆 ⊆ 𝑁 . Fix coalition 𝑆 ⊆ 𝑁
and let 𝑎∗𝑁  be (one of) the optimal set(s) of actions taken by 𝑁 . Then, 
𝑣(𝑁) =

∑

𝑖∈𝑁 𝑅𝑖(𝑎∗𝑁 ), 𝑣𝐹 (𝑁 ⧵ 𝑆) =
∑

𝑖∈𝑁⧵𝑆 𝑅𝑖

(

𝑎+𝐹 (𝑁⧵𝑆)

)

 and 𝑣𝐿𝑚𝑎𝑥(𝑆) =
∑

𝑖∈𝑆 𝑅𝑖

(

𝑎+𝐿(𝑆)
)

, where 𝑎+𝐹 (𝑁⧵𝑆) is the best maximizer for 𝑆 among the 
maximizers when 𝑁 ⧵ 𝑆 chooses first and 𝑎+𝐿(𝑆) is a maximizer for 𝑆
after 𝑁 ⧵ 𝑆 has chosen 𝑎+𝐹 (𝑁⧵𝑆). We thus have that

𝑣𝐿𝑚𝑎𝑥(𝑆) + 𝑣𝐹 (𝑁 ⧵ 𝑆) =
∑

𝑖∈𝑆
𝑅𝑖

(

𝑎+𝐿(𝑆)
)

+
∑

𝑖∈𝑁⧵𝑆
𝑅𝑖

(

𝑎+𝐹 (𝑁⧵𝑆)

)

=
∑

𝑖∈𝑁
𝑅𝑖

(

{𝑎+𝐿(𝑆), 𝑎
+
𝐹 (𝑁⧵𝑆)}

)

≤
∑

𝑖∈𝑁
𝑅𝑖(𝑎∗𝑁 )

= 𝑣(𝑁),

where the inequality follows from the fact that, by feasibility comple-
mentarity, {𝑎+𝐿(𝑆), 𝑎+𝐹 (𝑁⧵𝑆)} ∈ 𝑓𝑁 .

Next, we show (ii). An allocation 𝑥 ∈ 
(

𝑣𝐹
) if 𝑣(𝑁) − 𝑣𝐹 (𝑁 ⧵ 𝑆) ≤

𝑥(𝑆) ≤ 𝑣𝐹 (𝑆) for all 𝑆 ⊆ 𝑁 . An allocation 𝑥 ∈ 
(

𝑣𝐿
) if 𝑣𝐿 (𝑆) ≤
𝑚𝑖𝑛 𝑚𝑖𝑛
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𝑥(𝑆) ≤ 𝑣(𝑁)− 𝑣𝐿𝑚𝑖𝑛(𝑁 ⧵𝑆). It is easy to see that  (

𝑣𝐹
)

⊆ 
(

𝑣𝐿𝑚𝑖𝑛
) if and 

only if 𝑣(𝑁) ≥ 𝑣𝐹 (𝑆) + 𝑣𝐿𝑚𝑖𝑛(𝑁 ⧵ 𝑆) for all 𝑆. The results follows from 
the proof of part (i) and Proposition  5. □

Given our definitions of the optimistic and pessimistic value func-
tions, we obtain the following corollary: guaranteeing that no coali-
tion receives more than its upper bound is at least as difficult as 
guaranteeing that it receives at least its lower bound.

Corollary 8.  For all 𝑃 ∈ −∪+, we have that  (𝑣𝑜(⋅, 𝑃 )) ⊆  (𝑣𝑝(⋅, 𝑃 )).

Next, we show that when we have negative externalities the anti-
core of the optimistic game is always non-empty.

Theorem 9.  For all 𝑃 ∈ −,  (𝑣𝑜(⋅, 𝑃 )) is non-empty.

Proof.  Fix 𝑃 ∈ − and write 𝑣𝐹 (𝑆) and 𝑣𝑜(𝑆) instead of 𝑣𝐹 (𝑆, 𝑃 ) and 
𝑣𝑜(𝑆, 𝑃 ). Since 𝑃 ∈ − we have that 𝑣𝑜 = 𝑣𝐹 .

Let 𝑆 ⊂ 𝑁 and let 𝑎∗ be (one of) the maximizer(s) for the problem of 
the grand coalition and 𝑎𝐹 (𝑆) be one of the maximizers when 𝑆 selects 
first. We show that 𝑣𝑜(𝑆) ≥ ∑

𝑖∈𝑆 𝑅𝑖 (𝑎∗).
We have that

𝑣𝑜(𝑆) =
∑

𝑖∈𝑆
𝑅𝑖

(

𝑎𝐹 (𝑆)
)

≥
∑

𝑖∈𝑆
𝑅𝑖

(

𝑎∗𝑆
)

=
∑

𝑖∈𝑆
𝑅𝑖

(

𝑎∗
)

,

where the inequality is by definition of 𝑎𝐹 (𝑆), since 𝑎∗𝑆 ∈ 𝑓𝑆 (⊖𝑁⧵𝑆 ).
Since 𝑎∗ is a maximizer for the grand coalition, by definition 

∑

𝑖∈𝑁 𝑅𝑖(𝑎∗) = 𝑣𝑜(𝑁). Thus, (𝑅𝑖(𝑎∗)
)

𝑖∈𝑁  is in (𝑣𝑜). □

Combining our two main results, we obtain the following corollary.

Corollary 10.  For all 𝑃 ∈ −, ∅ ≠  (𝑣𝑜(⋅, 𝑃 )) ⊆  (𝑣𝑝(⋅, 𝑃 )).

Thus, with very little structure on the problem other than negative 
feasibility externalities, we are able to show the non-emptiness of the 
core of the pessimistic game. Negative externalities lead to substantial 
benefits from cooperation to improve efficiency, and we can always 
distribute these benefits in a stable manner.

On the other hand, the guarantee of a non-empty anti-core does 
not carry over to problems with positive externalities, as illustrated in 
the counterexamples below. This shows the (possibly) counterintuitive 
results that negative externalities yield inherently stable games, while 
positive externalities can lead to instability as there is more temptation 
to free ride.

Example 11.  We modify Example  4 to suppose increasing returns to 
scale in production. Suppose the same marginal utilities, but now the 
marginal cost of production is 14 for the first unit, 9 for the second, 7 
for the third, 3 for the fourth and 1 afterwards.

We obtain the following values:

 𝑆 𝑣𝑝(𝑆) 𝑣𝑜(𝑆) 
 {1} 0 7  
 {2} 0 0  
 {3} 0 0  
 {1, 2} 0 0  
 {1, 3} 0 0  
 {2, 3} 8 8  
 {1, 2, 3} 15 15  

We explain how the values for coalitions {1} and {2, 3} are computed. 
If agent 1 has to choose first, it faces too high marginal costs, and it 
consumes nothing, and 𝑣𝑝({1}) = 0. Coalition {2, 3}, acting first, will 
consume 5 units to generate a net surplus of 12 − 14 + 12 − 9 + 8 − 7 +
6 − 3 + 4 − 1 = 8 = 𝑣𝑝( 2, 3 ).
{ }

729 
Now, consider 𝑣𝑜({1}). We have that coalition {2, 3} has consumed 
5 units so agent 1 is now facing marginal costs of 1. He consumes 2 
units for a gain of 6 − 1 + 3 − 1 = 7 = 𝑣𝑜({1}). Since {1}, when alone, 
does not consume, we have that 𝑣𝑜({2, 3}) = 𝑣𝑝({2, 3}) = 8.

To find an allocation in (𝑣𝑜), we need 𝑦1 ≤ 7, 𝑦2 ≤ 0 and 𝑦3 ≤ 0, 
which are incompatible with 𝑦1 + 𝑦2 + 𝑦3 = 15, and thus (𝑣𝑜) = ∅. 
Notice that here (𝑣𝑝) ≠ ∅.

Example 12. Atay and Trudeau (2024b) provide a variant of the 
queueing problem by supposing that agents must buy machines to 
queue on, and can buy as many machines as they want. The problem 
becomes one with positive feasibility externalities: by itself, a coalition 
can only buy its own machines and queue on them; if it joins others, 
it can still do so, but can also take advantage of unused time slots on 
their machines. Hence, in this case, choosing last corresponds to the 
optimistic approach, 𝑣𝑜 = 𝑣𝐿𝑚𝑎𝑥. Atay and Trudeau (2024b) show that 
the core of the corresponding pessimistic game is sometimes empty, 
sometimes not. By Theorem  7, so is the anti-core of the optimistic game.

The use of both an optimistic and a pessimistic game yields two 
(potentially) interesting Shapley values. Their stability depends on the 
convexity/concavity of these games.

Proposition 13.  For all 𝑃 ∈ − ∪ + we have:
1. if 𝑣𝑜(⋅, 𝑃 ) is concave then 𝑆ℎ(𝑣𝑜(⋅, 𝑃 )) ∈  (𝑣𝑜(⋅, 𝑃 )) ⊆  (𝑣𝑝(⋅, 𝑃 ));
2. if 𝑣𝑝(⋅, 𝑃 ) is convex then 𝑆ℎ(𝑣𝑝(⋅, 𝑃 )) ∈  (𝑣𝑝(⋅, 𝑃 )).

This increases the chances of finding a stable allocation: if we are 
interested in 𝑣𝑝, but it is not convex, we have a backup: if 𝑣𝑜 is concave 
its Shapley value is in the core of the pessimistic game.

5. Applications

In this section, we discuss several applications that exhibit feasibil-
ity externalities. We examine how these applications can be modeled 
within our framework, how optimistic and pessimistic approaches have 
been defined in each case, and whether our results allow to reinterpret 
existing results.

5.1. Queueing problems

We first examine more formally our example of queueing problems. 
Consider a set of agents 𝑁 that each have a job to be processed at 
one machine. The machine can process only one job at a time. Each 
agent 𝑖 ∈ 𝑁 incurs waiting costs 𝑤𝑖 > 0 per unit of time. The queueing 
problem determines both the order in which to serve agents and the 
corresponding monetary transfers they should receive (see Chun (2016) 
for a survey on the queueing problem). See Example  2 for the definition 
of the problem in our framework.

These pessimistic and optimistic approaches have been defined 
independently in the literature. Maniquet (2003) built the optimistic 
game, using the assumption that a coalition is served before the players 
outside the coalition. The minimal transfer rule,5 𝜙𝑚𝑖𝑛, is obtained by 
applying the Shapley value to 𝑣𝑜. Alternatively, Chun (2006) assumes 
that a coalition is served after the non-coalitional members, obtaining 
the pessimistic game.6 The maximal transfer rule,7 𝜙𝑚𝑎𝑥, is obtained by 
applying the Shapley value to 𝑣𝑝.

We obtain the following results.

5 The minimal transfer rule assigns to each agent a position in the queue 
and a monetary transfer. The monetary transfer is equal to half of their unit 
waiting cost multiplied by the number of agents in front of them in the queue 
minus half of the sum of the unit waiting costs of the people behind them in 
the queue.

6 Independently, Klijn and Sánchez (2006) considered the same scenario as 
in Chun (2006). They introduced the associated game, the so-called tail game, 
and studied its core.
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Theorem 14.  For any queueing problem, we have 𝜙𝑚𝑖𝑛 ∈ (𝑣𝑜) ⊆ (𝑣𝑝)
and 𝜙𝑚𝑎𝑥 ∈ (𝑣𝑝).

The results that 𝑣𝑜 is concave and 𝜙𝑚𝑖𝑛 ∈ (𝑣𝑜) is easily obtained 
from Maniquet (2003), while the results that 𝑣𝑝 is convex and 𝜙𝑚𝑎𝑥 ∈
(𝑣𝑝) come from Chun (2006). The result that 𝜙𝑚𝑖𝑛 ∈ (𝑣𝑝) can be 
obtained by comparing the shares of a coalition to its lower bound; 
but by our Proposition  13, the result is obtained without any further 
calculations. Hence, we obtain a new justification for the minimal 
transfer rule. While both rules offer allocations above the pessimistic 
bounds, the minimal transfer allow guarantees allocations below the 
optimistic bounds.

5.2. Minimum cost spanning tree problems

We have a set of nodes consisting of 𝑁0 ≡ 𝑁 ∪ {0}, where 0 is 
a special node called the source. Agents need to be connected to the 
source to obtain a good or a service. To each edge (𝑖, 𝑗) ∈ 𝑁0 × 𝑁0
corresponds a cost 𝑐𝑖𝑗 ≥ 0, with the assumption that 𝑐𝑖𝑗 = 𝑐𝑗𝑖. These 
costs are fixed costs, paid once if an edge is used, regardless of how 
many agents use it. The problem is to connect all agents to the source 
at the cheapest cost. Given the assumptions above, among the optimal 
networks there always exists a spanning tree, hence the name of the 
problem. A minimum cost spanning tree (mcst) problem is (𝑁, 𝑐), where 
𝑐 is the list of all edge costs. 𝑐 is also called a cost matrix.

The set of actions of player 𝑖 is the set of edges containing node 𝑖: 
agent 𝑖 chooses 𝑗 ∈ 𝑁0⧵𝑖, building the edge (𝑖, 𝑗). The usual assumption 
is to suppose that a coalition 𝑆 cannot use edge (𝑖, 𝑗) if 𝑘 ∈ {𝑖, 𝑗}
is such that 𝑘 ∈ 𝑁 ⧵ 𝑆. Then 𝑓𝑆 (⊖𝑁⧵𝑆 ) is the set of spanning trees 
rooted at 0 that does not use nodes in 𝑁 ⧵ 𝑆, while in 𝑓𝑆 (𝑎𝑁⧵𝑆 ), for 
any 𝑎𝑁⧵𝑆 , we also treat agents 𝑖 ∈ 𝑁 ⧵ 𝑆 such that (𝑎𝑁⧵𝑆 )𝑖 ≠ ⊖𝑖 as 
additional sources. Thus, we obtain a problem with positive feasibility 
externalities. We complete the representation in our setting by having 
𝑅𝑖 = −𝑐𝑖𝑎𝑖 , i.e., agent 𝑖 pays for the cost of the edge he builds.

Most of the literature has considered the pessimistic game 𝑣𝑝, in 
which a coalition 𝑆 connects to the source first, before 𝑁 ⧵ 𝑆. An 
exception is Bergantiños and Vidal-Puga (2007b), which considers the 
game in which coalition 𝑆 supposes that 𝑁 ⧵ 𝑆 has already connected 
to the source. In such a case, agents in 𝑁 ⧵ 𝑆, being connected, act 
as sources for 𝑆. Thus, how they are connected is irrelevant, and this 
game is equivalent in our notation to both 𝑣𝐿𝑚𝑖𝑛 and 𝑣𝐿𝑚𝑎𝑥.

The literature has devoted considerable attention to the notion of 
irreducible cost matrix (Bergantiños & Vidal-Puga, 2007a; Feltkamp 
et al., 1994): since many edges are not used in any optimal spanning 
tree, we reduce the cost of these edges as much as possible, under 
the constraint that 𝑣𝑝(𝑁) does not change. There is a unique way to 
do so, and irreducible edge costs can be obtained as follows: take any 
optimal spanning tree, and for each pair of nodes (𝑖, 𝑗) ∈ 𝑁0, look at 
the (unique) path from one to the other, and assign to (𝑖, 𝑗) the most 
expensive edge on that path. We then obtain the irreducible cost matrix 
𝑐. Let 𝑣𝑝 and 𝑣𝑜 be the pessimistic and optimistic games obtained from 
the irreducible cost matrix.

Theorem 15 (Bergantiños & Vidal-Puga, 2007b). For any mcst problem 
(𝑁, 𝑐), we have

(i) 𝑣𝑝 and 𝑣𝑜 are dual.
(ii) 𝑣𝑜 = 𝑣𝑜.

This leads us, using our results, to the following corollary.

7 The maximal transfer rule assigns to each agent a position in the queue 
and a monetary transfer. The monetary transfer is equal to half of the sum of 
the unit waiting costs of her predecessors minus half of her unit waiting cost 
multiplied by the number of her followers.
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Corollary 16.  For any mcst problem (𝑁, 𝑐) we have (𝑣𝑜) = (𝑣𝑝).

This result is interesting for three reasons. First, (𝑣𝑝) is called 
the irreducible core (Bird, 1976), and has been shown to be uniquely 
characterized by additivity and monotonicity properties (Bergantiños 
& Vidal-Puga, 2015; Tijs et al., 2006). Second, our equivalence with 
the anti-core of the optimistic game means that we do not need to 
go through the modification of the cost matrix into the irreducible 
matrix to obtain the irreducible core. Third, since the game is concave 
(Bergantiños & Vidal-Puga, 2007a), the Shapley value is guaranteed 
to be in the core of the pessimistic game. This result follows directly 
from Proposition  13, without the need to analyze the problem under 
its specifications. The resulting allocation rule is the well-studied Folk 
rule.

It is also worth noting that the allocation used to prove the non-
emptiness of the anti-core of the optimistic game in Theorem  9 corre-
sponds to the Bird allocation (Bird, 1976) in which each agent pays the 
cost of the edge connecting it to its nearest neighbor in its unique path 
to the source.

5.3. River sharing problems

Suppose a river described as a line with agents 𝑖 being upstream 
of agent 𝑗 if and only 𝑖 < 𝑗. There is an entry 𝑒𝑖 ≥ 0 of water at 
each location 𝑖, and the water that flows at location 𝑖 can be consumed 
by agent 𝑖 or allowed to flow downstream. The benefit from water 
consumption for agent 𝑖 is given by a strictly increasing and strictly 
concave function 𝑏𝑖 such that 𝑏𝑖(0) = 0. A water sharing problem is 
(𝑁, 𝑒, 𝑏), with the set of players 𝑁 , the vector of water entries 𝑒, and 
the collection of benefit functions 𝑏 (Ambec & Sprumont, 2002). The 
problem for the grand coalition is to maximize joint benefits, under the 
constraint imposed by the flows of water. If 𝑥𝑖 ≥ 0 is the consumption 
level of agent 𝑖, the feasible set is constrained as follows: for any 
𝑖 ∈ 𝑁 , that ∑𝑗≤𝑖 𝑥𝑗 ≤

∑

𝑗≤𝑖 𝑒𝑗 . For a coalition 𝑆, if the complement 
set is consuming any amount of water, the feasible set is reduced, 
and we thus have negative feasibility externalities. Thus, 𝑣𝑜 = 𝑣𝐹  and 
𝑣𝑝 = 𝑣𝐿𝑚𝑖𝑛 and by Theorem  9, we already know that (𝑣𝑜) and (𝑣𝑝) are 
non-empty.

If coalition 𝑆 chooses first, it has access to all water entries in the 
river, subject to the physical constraints imposed by the river, i.e., an 
agent upstream of a location cannot consume the water entry at that 
location. Thus, we obtain that 𝑣𝐹 (𝑆) = max(𝑥𝑖

)

𝑖∈𝑆

∑

𝑖∈𝑆 𝑏𝑖(𝑥𝑖) under the 
constraints that ∑ 𝑗≤𝑖

𝑗∈𝑆
𝑥𝑗 ≤

∑

𝑗≤𝑖 𝑒𝑗 for all 𝑖 ∈ 𝑆.
If 𝑆 chooses last, then 𝑁⧵𝑆, given that its members are not satiable, 

have consumed as much water as they could. The exact maximizer is 
thus irrelevant, and we have 𝑣𝐿 ≡ 𝑣𝐿𝑚𝑖𝑛 = 𝑣𝐿𝑚𝑎𝑥. To define 𝑣𝐿 properly we 
need the following definition: a coalition is consecutive if for any pair of 
agents in that coalition, adjoining agents are also in the coalition. Thus, 
we have that 𝑣𝐿(𝑆) = 0 if 𝑛 ∉ 𝑆 and 𝑣𝐿(𝑆) = max(𝑥𝑖

)

𝑖∈𝑆𝑛

∑

𝑖∈𝑆𝑛 𝑏𝑖(𝑥𝑖)

under the constraints that ∑ 𝑗≤𝑖
𝑗∈𝑆𝑛

𝑥𝑗 ≤
∑

𝑗≤𝑖
𝑗∈𝑆𝑛

𝑒𝑗 for all 𝑖 ∈ 𝑆𝑛 otherwise, 
where 𝑆𝑛 is the largest consecutive coalition in 𝑆 that contains 𝑛. In 
words, if 𝑖 ∈ 𝑆 is such that a member of 𝑁 ⧵ 𝑆 is downstream, then 
the water entries at 𝑖 and upstream have all been consumed by 𝑁 ⧵ 𝑆. 
Thus, the only group in 𝑆 that is able to consume is 𝑆𝑛, such that all 
its members are downstream of all members of 𝑁 ⧵ 𝑆.

The coalitional functions proposed in the literature have been con-
structed from various doctrines used in international law. Under the 
unlimited territorial integrity (UTI) doctrine, an agent can consume any 
water that flows through its location. 𝑣𝑈𝑇𝐼 (𝑆) is seen as an upper bound 
on the welfare of 𝑆, and it is easy to see that it corresponds to 𝑣𝐹 .

Under the absolute territorial sovereignty (ATS) doctrine, an agent 
has absolute rights over the water entering on its territory. For a single 
agent 𝑖, this implies that he should received at least 𝑏𝑖(𝑒𝑖). For larger 
coalitions, we suppose that an agent 𝑖 can transfer water to 𝑗 only 
if 𝑗 is its immediate downstream neighbor. Otherwise, the water is 
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consumed by the agent(s) between 𝑖 and 𝑗. Thus, let 𝛤 (𝑆) be the 
coarsest partition of 𝑆 into consecutive coalitions. Then, 𝑣𝐴𝑇𝑆 (𝑆) =
∑

𝑇∈𝛤 (𝑆) max(𝑥𝑖
)

𝑖∈𝑇

∑

𝑖∈𝑇 𝑏𝑖(𝑥𝑖) under the constraints that 
∑

𝑗≤𝑖
𝑗∈𝑇

𝑥𝑗 ≤
∑

𝑗≤𝑖
𝑗∈𝑇

𝑒𝑗 for all 𝑖 ∈ 𝑇  and all 𝑇 ∈ 𝛤 (𝑆).
Given the pessimistic constraints in the ATS version of the problem, 

𝑣𝐴𝑇𝑆 (𝑆) is seen as a lower bound on the welfare of 𝑆. But it is 
immediate that 𝑣𝐴𝑇𝑆 ≥ 𝑣𝐿, with, in particular, that 𝑣𝐴𝑇𝑆 (𝑆) = 𝑣𝐿(𝑆)
if 𝑆 is a consecutive coalition containing 𝑛 and 𝑣𝐴𝑇𝑆 (𝑆) ≥ 0 = 𝑣𝐿(𝑆)
if 𝑆 does not contain 𝑛. Thus, while pessimistic, 𝑣𝐴𝑇𝑆 is much less 
pessimistic than 𝑣𝐿. We thus obtain that:
𝑣𝑝 ≡ 𝑣𝐿 ≤ 𝑣𝐴𝑇𝑆 ≤ 𝑣𝑈𝑇𝐼 = 𝑣𝐹 ≡ 𝑣𝑜.

Ambec and Sprumont (2002) define the downstream incremental 
allocation rule as follows: 𝑦𝐷𝐼

𝑖 = 𝑣𝑈𝑇𝐼 ({1,… , 𝑖})−𝑣𝑈𝑇𝐼 ({1,… , 𝑖 − 1}) =
𝑣𝐴𝑇𝑆 ({1,… , 𝑖})−𝑣𝐴𝑇𝑆 ({1,… , 𝑖 − 1}). They show that it is the unique in-
tersection of (𝑣𝑈𝑇𝐼 ) ∩(𝑣𝐴𝑇𝑆 ). Trivially, the downstream incremental 
allocation is also in the core of our pessimistic game.

The use of 𝑣𝑈𝑇𝐼  as an upper bound as been criticized (Herings 
et al., 2007; van den Brink et al., 2007), as the most upstream agents 
can never do better than consume all of their water; the upper bound 
prevents them from extracting benefits of letting downstream agents 
consume some of their water. Given Corollary  8 which guarantees that 
(𝑣𝑜) ⊆ (𝑣𝑝), our results provide an immediate resolution to this 
problem: there are stable allocations in (𝑣𝑝)⧵(𝑣𝑜) that allow for larger 
compensations of upstream agents.

In this model 𝑣𝑝 is a particularly pessimistic function, and only 
coalitions containing 𝑛 can guarantee a strictly positive lower bound. 
The function 𝑣𝐴𝑇𝑆 , which offers higher lower bounds, provides a com-
promise between the optimistic (UTI) function and the pessimistic 
function.

Our results (the proof of Theorem  9) also provide an allocation in 
both (𝑣𝑜) and (𝑣𝑝), a no-transfer rule in which each agent simply con-
sumes its efficient amount of water. While it is particularly beneficial 
to downstream agents who do not have to compensate upstream agents 
for their reduced consumption, it has the advantage of being simple to 
compute: if the counterfactuals are difficult to determine, making the 
calculation of any other allocation complex or impossible, not imposing 
any transfers guarantees a stable allocation.

Many extensions of the model have been considered, including to 
cases where some agents can be satiated (Ambec & Ehlers, 2008) and 
cases with multiple springs and bifurcations (Khmelnitskaya, 2010). 
See Béal et al. (2012) for a review.

5.4. Applications with dual game structure

The applications and examples we have examined so far have all 
been such that studying the problem using lower and upper bounds 
gave different sets of allocations, and thus the perspective taken mat-
tered. However, in some other cases, the two approaches generate dual 
games, and as seen in Proposition  1, it is then unnecessary to study 𝑣𝑜
and 𝑣𝑝 separately. We discuss this duality and show that this duality 
can be easily spotted.

In our framework, 𝑣𝑜 and 𝑣𝑝 are dual games if and only if for any 
coalition 𝑆, letting 𝑆 pick first and 𝑁⧵𝑆 react to that afterwards always 
leads to an efficient outcome. In other words, an optimal outcome can 
always be obtained by sequential selfish optimizations by 𝑆 and 𝑁 ⧵𝑆.

Proposition 17.  For a problem 𝑃 ∈ − ∪ +, we have that 𝑣𝑜 and 
𝑣𝑝 are dual games if and only if for all 𝑆 ⊂ 𝑁 there exists 𝑎𝑆 and 𝑎𝑁⧵𝑆
such that 𝑣𝑜(𝑆, 𝑃 ) = ∑

𝑖∈𝑆 𝑅𝑖(𝑎𝑆 ), 𝑣𝑝(𝑁 ⧵ 𝑆, 𝑃 ) =
∑

𝑖∈𝑁⧵𝑆 𝑅𝑖(𝑎𝑁⧵𝑆 ) and 
{𝑎𝑆 , 𝑎𝑁⧵𝑆 (𝑎𝑆 )} ∈ argmax𝑎𝑁∈𝑓𝑁

∑

𝑖∈𝑁 𝑅𝑖(𝑎𝑁 ).

We then have that  (𝑣𝑜) =  (𝑣𝑝).
Two important applications exhibiting duality are bankruptcy

(claims) problems and airport problems.
731 
The bankruptcy problem deals with sharing an estate 𝐸 of a perfectly 
divisible resource among agents 𝑁 who have conflicting claims. That 
is, the sum of claims is larger than the estate: ∑𝑖∈𝑁 𝑐𝑖 > 𝐸 where 𝑐𝑖
is the claim of agent 𝑖. O’Neill (1982) studied such problems from an 
economic point of view. He introduced an associated TU game to each 
bankruptcy problem and also defined the run-to-the-bank rule based 
on an average over all possible orders on agents’ arrival. Within our 
framework, the action of agent 𝑖 is the amount that he takes from the 
estate, which is also his revenue. We thus have a negative feasibility 
externality problem.

The optimistic approach corresponds to a bank-run situation, in 
which coalition 𝑆 arrives first and collects its combined claim or 
the endowment, whichever is smallest. The pessimistic approach has 
coalition 𝑆 arriving last, collecting what is left after the bank run of 
𝑁⧵𝑆. The combination of the optimistic action of 𝑆 and the pessimistic 
action of 𝑁 ⧵ 𝑆 always leads to a full distribution of the endowment, 
and thus to an efficient outcome. Following Proposition  17, the two 
games are dual.

The airport problem introduced by Littlechild and Owen (1973) aims 
to allocate the cost of a landing strip among users with varying runway 
length requirements. Every agent 𝑖 requires a length 𝑙𝑖 at the runway. 
It is assumed that the cost to build the runway is non-decreasing in its 
length. That is, for any two agents 𝑖 and 𝑗 such that 𝑙𝑖 < 𝑙𝑗 , 𝑐(𝑙𝑖) ≤ 𝑐(𝑙𝑗 ). 
Within our framework, the action of agent 𝑖 is the segment of the 
runway that he builds, and his revenues is the cost of that segment.8 
We thus have a problem with positive feasibility externalities.

The pessimistic approach assumes that coalition 𝑆 arrives first to 
build its runway. The longest runway required by a member of the 
coalition will be built, which is max𝑖∈𝑆 𝑙𝑖. Suppose next that coalition 
𝑁 ⧵ 𝑆 picks last. Knowing that a runway of length max𝑖∈𝑆 𝑙𝑖 has been 
built, it extends it, if needed, to a length of max𝑖∈𝑁 𝑙𝑖. Given the inelastic 
demands of our agents, the length of the runway is efficient. Hence, the 
optimistic and pessimistic approaches are dual for airport problems.

Recently, Bergantiños and Moreno-Ternero (2025b) studied the dis-
tribution of revenues in streaming platforms. They show that the opti-
mistic and the pessimistic approaches leads to dual games, and conse-
quently, their Shapley values coincide. Based on the problem’s specifi-
cations, Proposition  17 can be used to obtain their result.

We conclude this section by an illustration of the line between 
duality and non-duality. In a cooperative production problem, a set 
of agents share a production technology to produce some good(s). 
This joint production technology might exhibit increasing or decreasing 
returns to scale/scope.

As shown in Examples  4 and 11, when the quantities consumed 
are endogenously determined (see, for instance, Fleurbaey & Maniquet, 
1996; Moulin, 1990; Roemer & Silvestre, 1993), the approach chosen 
matters, and a coalition 𝑆 choosing first and the complement 𝑁 ⧵ 𝑆
might very well lead to an inefficient quantity being produced and/or 
its distribution to agents being inefficient. Thus, we have no duality.

If we suppose that demands for the good(s) are exogenous (see, 
for instance, de Frutos, 1998; Moulin, 1996; Moulin & Shenker, 1992), 
then producing these inelastic demands is efficient. Given that demands 
are inelastic, we always obtain that the same (efficient) total quantity 
is produced by having 𝑆 and 𝑁 ⧵ 𝑆 sequentially choose. Thus, the 
optimistic and pessimistic games are dual.

8 More precisely, as in minimum cost spanning tree problems, an agent 
chooses to connect to an agent or the source. If agent 𝑖 picks 𝑗 < 𝑖, he would 
be responsible for the cost 𝑐(𝑖) − 𝑐(𝑗). If he picks 𝑗 > 𝑖, the cost is zero. For 
coalition 𝑆, the feasible set is such that the combination of choices made by 
its members must be such that all agents end up connected to the source.
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6. Concluding remarks

This paper develops a general framework for analyzing operations 
research games when the actions of players outside a coalition influence 
what that coalition can achieve. By capturing how the feasible actions 
of a coalition depend on the behavior of outsiders, our approach unifies 
and extends existing modeling assumptions used across a wide range 
of applications. The theoretical tools and results we provide establish a 
basis for systematically analyzing new and more complex cooperative 
situations involving external effects (e.g., pipeline externalities problem 
(Trudeau & Rosenthal, 2025) and streaming platform (Bergantiños 
& Moreno-Ternero, 2025c). Moreover, the framework is readily ap-
plicable to a wide range of optimization-based problems, including 
queueing, minimum cost spaning tree, and resource sharing problems 
where externalities are inherent. We believe this foundation can guide 
the development of tailored models in future research and facilitate 
the implementation of cooperative solutions in practical settings, ul-
timately broadening the scope and impact of cooperative game theory 
in operations research.

Moreover, our model can be extended to address more complex 
settings. We have considered what we call feasibility externalities, 
in which the actions taken affect the feasible sets of other agents. 
First, when we have direct externalities, in which the actions taken 
by a group directly affect the revenues obtained by other agents, the 
additional difficulty is that we have to determine who to credit for 
these direct externalities. The main message from our results is that 
there is considerable benefit in defining the optimistic and pessimistic 
values in a consistent manner: if the combination of what 𝑆 chooses in 
the optimistic game and what 𝑁 ⧵ 𝑆 chooses in the pessimistic game 
is feasible for the grand coalition 𝑁 , then we obtain the inclusion 
result of Theorem  7, even in the presence of direct externalities. The 
presence of direct externalities yields multiple definitions of optimistic 
and pessimistic functions.

Another extension involves exploring a wider set of coalition be-
haviors. For instance, we may ask: while having a coalition move first 
or last provides natural bounds, are these always the true lower and 
upper bounds? As they lie beyond the scope of the present paper, 
for their conceptualization and further results we refer to Atay and 
Trudeau (2024a). The analysis there shows that the ‘‘move first/move 
last’’ assumption corresponds to worst- and best-case scenarios in richer 
strategic settings. Under natural conditions, these extremes reflect the 
actual boundaries of what coalitions can expect, meaning the sim-
plifications often adopted in practice are not only computationally 
convenient but also theoretically sound.
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Appendix. Comparison to alpha and beta games

We first examine the classic definitions of 𝛼 and 𝛽 games (Shubik, 
1982; pp. 136–138). Firstly, 𝛼 games are maximin: the complement 
𝑁⧵𝑆 first tries to minimize the payoff to 𝑆, and then 𝑆 acts to maximize 
its payoff. By opposition 𝛽 games are minimax: 𝑆 tries to maximize its 
payoff, and then the complement 𝑁 ⧵𝑆 tries to minimize their payoffs. 
In our context, they are defined as follows:
𝑣𝛼(𝑆) = max

𝑎𝑆∈𝑓𝑆 (𝑎𝑁⧵𝑆 )
min

𝑎𝑁⧵𝑆∈𝑓𝑁⧵𝑆
(

⊖𝑆
)

∑

𝑖∈𝑆
𝑅𝑖(𝑎𝑆 )

and

𝑣𝛽 (𝑆) = min
𝑎𝑁⧵𝑆∈𝑓𝑁⧵𝑆

(

𝑎𝑆
)

max
𝑎𝑆∈𝑓𝑆 (⊖𝑁⧵𝑆 )

∑

𝑖∈𝑆
𝑅𝑖(𝑎𝑆 )

= max
∑

𝑅𝑖(𝑎𝑆 )
𝑎𝑆∈𝑓𝑆 (⊖𝑁⧵𝑆 ) 𝑖∈𝑆
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where the last simplification is because of our assumption that there is 
no direct externalities. Thus, in 𝑣𝛽 , 𝑁 ⧵𝑆 cannot do anything. However, 
in 𝑣𝛼 , 𝑁 ⧵ 𝑆 can reduce the value of 𝑆 if its actions allows to reduce 
the feasible set of coalition 𝑆.

It is immediate that 𝑣𝛽 = 𝑣𝐹 . Notice that the definitions of 𝑣𝛼 and 
𝑣𝐿min are very similar, with the only distinction being that we suppose 
for 𝑣𝐿min that 𝑁 ⧵ 𝑆 can only select from its set of maximizers, while in 
𝑣𝛼 it can select any actions from its feasible set. Thus, the distinction is 
similar to restricting to credible threats. 𝑣𝐿max is more optimistic in that 
we suppose that 𝑁 ⧵ 𝑆 selects its maximizer that is most favorable to 
𝑆.

Example 18.  We revisit Example  4. As discussed, 𝑣𝛽 corresponds to 
𝑣𝐹 . Here, 𝑣𝛼 is particularly simple: for each coalition 𝑆 there exists 
a quantity consumed by 𝑁 ⧵ 𝑆 such that it raises the marginal costs 
so much that it becomes optimal for 𝑆 to consume nothing. Thus, 
𝑣𝛼(𝑆) = 0 for all 𝑆 ≠ 𝑁 .

The previous example shows that 𝑣𝛼 is not interesting because 
without the constraint of selecting a maximizer, we obtain values that 
are too low. In other words, 𝑣𝛼 is too pessimistic as it considers the 
complement set taking non-credible actions.

Notice that when we have positive externalities, the worst that 𝑁⧵𝑆
can do to 𝑆 is to stay inactive, keeping the feasible set of 𝑆 as small as 
possible, and thus 𝑣𝛼(𝑆, 𝑃 ) = 𝑣𝛽 (𝑆, 𝑃 ) = 𝑣𝐹 (𝑆, 𝑃 ).

We state these observations formally. 

Proposition 19. 
1. For all 𝑃 ∈ − and all 𝑆 ⊆ 𝑁 , we have 𝑣𝛼(𝑆, 𝑃 ) ≤ 𝑣𝑝(𝑆, 𝑃 ) ≤

𝑣𝑜(𝑆, 𝑃 ) = 𝑣𝛽 (𝑆, 𝑃 ).
2. For all 𝑃 ∈ + and all 𝑆 ⊆ 𝑁 , we have 𝑣𝛼(𝑆, 𝑃 ) = 𝑣𝛽 (𝑆, 𝑃 ) =

𝑣𝑝(𝑆, 𝑃 ) ≤ 𝑣𝑜(𝑆, 𝑃 ).

Overall, we can see that 𝑣𝛽 corresponds to 𝑣𝐹 , and thus is not consis-
tently optimistic or pessimistic in our framework. 𝑣𝛼 is too pessimistic 
in problems with negative externalities as it allows the complement set 
to take non-credible actions.
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