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ARTICLE INFO ABSTRACT

MSC: Cooperative game theory explores how to fairly allocate the joint value generated by a group of decision-
90B10 makers, but its application is compromised by the large number of counterfactuals needed to compute the
90B30

value of all coalitions, a problem made even more complicated when externalities are present. We provide

90B35 a theoretical foundation for a simplification used in many applications, in which the value of a coalition is
zig;j computed assuming that they either select before or after the complement set of agents, providing optimistic

and pessimistic values on what a coalition should receive. In a vast set of problems exhibiting what we call
Ié‘;yn"lve Ozi:ory feasibility externalities, we show that ensuring a coalition does not receive more than its optimistic value is

always at least as difficult as ensuring it receives its pessimistic value. Furthermore, under the presence of

Optimization problems X . K X . R
negative externalities, we establish the existence of stable allocations that respect these bounds. Finally, we

Cost sharing

Core
Externalities

examine well-known optimization-based applications and their corresponding cooperative games to show how
our results lead to new insights and allow the derivation of further results from the existing literature.

1. Introduction

Cooperative transferable utility (TU) games provide a powerful
framework for analyzing collaboration among decision-makers, offering
tools to allocate the value or cost of joint projects in a fair and
stable way. This paper adds to the stream of research on operations
research games emerging from scenarios where a coalition of players
must solve a shared optimization problem.! These cooperative tools
have been applied extensively across a broad range of operations
research applications, including the distribution of revenues in stream-
ing platforms (Schlicher et al., 2024; Bergantiios & Moreno-Ternero,
2025a; Gongalves-Dosantos et al., 2025), cost-sharing in manufacturing
(Atay et al., 2021; Alon & Anily, 2023; Munich, 2024), international
kidney exchange programs (Benedek et al., 2025), resource allocation
problem (Rahmoune et al., 2024), claims problems (O’Neill, 1982),
airport cost allocation (Littlechild & Owen, 1973), and joint produc-
tion problems (Moulin, 1990; Moulin & Shenker, 1992). However, the
practical application of cooperative game theory becomes significantly

more complex in the presence of externalities—when the actions of
players outside a coalition influence what that coalition can achieve.

In particular, when assessing the value of a coalition S C N, the
assumptions we make about the behavior of the complement N \.S play
a central role. Are the outsiders cooperating among themselves? Are
they competing with or actively trying to harm S? A formal treatment
of these possibilities would require using partition form games, which
requires building a very large number of counterfactuals, compromising
their practical use.

In many applications based on an optimization problem, such as
queueing (Chun, 2016), minimum cost spanning trees (Bird, 1976), or
river-sharing problems (Ambec & Sprumont, 2002), simpler assump-
tions have been adopted: namely, that the coalition either moves before
or after the rest of the players. In this paper, we provide a general
framework that unifies and justifies these modeling choices through
the concept of feasibility externalities, where the feasible action set of
a coalition depends on the actions taken by outsiders. Our model not
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only provides a general framework for existing models but also offers
a foundation for analyzing new classes of operations research games
arising from an underlying joint optimization problem.

We distinguish between negative and positive feasibility externali-
ties. With negative externalities, the actions of non-members reduce the
feasible set available to a coalition—so a worst-case value arises when
the coalition moves last, and a best-case value arises when it moves
first. Conversely, under positive externalities, where the actions of
non-members expand a coalition’s feasible set, the worst-case scenario
corresponds to the coalition moving first, and the best-case one to it
moving last. These two perspectives yield natural lower and upper
bounds on what a coalition can achieve, forming the basis of what we
call the pessimistic and optimistic value functions.

We then explore the core (Gillies, 1959) of the pessimistic game
and the anti-core (see, for instance, Oishi et al., 2016) of the optimistic
game, identifying allocations that respectively ensure coalitions receive
at least their lower bound or no more than their upper bound. A
key result is that the anti-core of the optimistic game is always a
subset of the core of the pessimistic game. This inclusion provides a
powerful simplification: ensuring that no coalition receives more than
its optimistic value is always at least as hard as guaranteeing it receives
its pessimistic value—and in the case of negative externalities, such
stable allocations are always guaranteed to exist.

By examining applications like queueing and minimum cost span-
ning tree problems, we show that our approach allows to recover
natural concepts studied in these particular problems. For instance, we
obtain, from a different perspective, the irreducible core for minimum
cost spanning tree problems. Additionally, we provide a condition
to identify applications in which the pessimistic and optimistic func-
tions form dual games. Examples include well-studied problems like
bankruptcy (O’Neill, 1982) and airport cost allocation (Littlechild &
Owen, 1973). The condition is linked to the optimization itself: if a
coalition S choosing first and its complement N \ S choosing last
always yields an efficient outcome, then the two games are dual, and
there is no gain in applying the optimistic and pessimistic approaches
separately.

1.1. Related literature

We provide here a brief discussion of how our optimistic and pes-
simistic coalitional value functions compare to other concepts proposed
in the literature.

Different methods have been proposed to determine the value of a
coalition starting with the « and p games (Shubik, 1982; pp. 136-138).
The alpha game corresponds to maximin (a coalition maximizes its
revenues after the complement set has tried to minimize it) while the
beta game corresponds to minimax (a coalition first tries to maximize
its revenues, with the complement set then trying to minimize it). Full
definitions and links to our contexts are provided in Appendix, but to
summarize, the beta approach corresponds to a coalition always picking
first (and is thus sometimes optimistic and sometimes pessimistic de-
pending on the sign of the externalities), while the alpha game provides
seemingly unreasonably pessimistic values, in which the complement
set of agents goes out of their way to hurt the coalition in question. By
opposition, our approach is restricted to credible threats, in which the
complement set of agents maximizes its own benefits.

Alternative approaches model strategic interactions between a coali-
tion and the complement set through different equilibrium concepts.
For example, Chander and Tulkens (1997) define a value function based
on a Nash equilibrium between coalition S and singleton opponents in
N\ S, while Huang and Sjostrom (2003) allow N \.S to form its optimal
partition. Similarly, the recursive core introduced by Kéczy (2007)
adopts the idea that deviating agents act in their own self-interest and
are free to make their decisions, without determining their partition
in advance. How the complement coalition would reorganize itself if
a coalition breaks from the grand coalition is a frequent question of
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interest, with partition function form games (Kéczy, 2018) consigning
all such possibilities.

Optimistic and pessimistic assumptions on the behavior of the com-
plement set are common, for example in the coalition formation litera-
ture. Our idea that the complement set is using a strategy that is optimal
for them, instead of trying to hurt S, is also found in Ray and Vohra
(1997). The non-cooperative interplay between S and N \ § is found
notably in Ichiishi (1981). This strand of literature seeks a solution
concept that consistently addresses the strategic effects of externalities
in the coalition formation process, whereas our aim is to provide a
unified model for TU games based on joint optimization problems, with
the ultimate goal of providing fair and stable allocations.

Closer to our perspective, Curiel and Tijs (1991) introduced two
operators, minimarg and maximarg, which determine each coalition’s
marginal contribution based on the worst and the best possible order
of agents, respectively. The minimarg assigns the smallest marginal
contribution, while the maximarg assigns the largest, embodying pes-
simistic and optimistic viewpoints, respectively. Iteratively applying
these operators to a game leads to a convex and concave game in
the limit, with these games being dual to each other. Our approach
differs in that they build these operators from a given value game,
while we consider the underlying problem of how to define the games
themselves.

1.2. Organization of this paper

The paper is organized as follows. Section 2 provides some pre-
liminaries on TU games. Section 3 introduces the framework and
defines the optimistic and pessimistic value functions. In Section 4 we
provide our main results: (i) an inclusion result between the set of
allocations making sure that no coalition gets more than the optimistic
upper bounds and the one guaranteeing the pessimistic lower bounds,
and (ii) the guaranteed existence of such allocations when feasibility
externalities are negative. In Section 5 we apply our framework to a
wide range of applications that have been well-studied in the literature.
Finally, Section 6 concludes the paper with further extensions.

2. Preliminaries

A cooperative game with transferable utility (or TU game) is defined
by a pair (N, v) where N is the (finite) set of agents and v is a value
function that assigns the value v(S) to each coalition S C N with
v(@#) = 0. The number v(S) is the value of the coalition. Whenever no
confusion may arise as to the set of players, we will identify a TU game
(N, v) with its value function ov.

Given a game v, an allocation is a tuple x € RV representing players’
respective allotment. The total payoff of a coalition § is denoted by
x(S) = X,cs X; With x(#) = 0. An allocation is efficient if x(N) = v(N),
and codlitionally rational if x(S) > v(S) for all S C N.

An allocation is said to be in the core of v if it is efficient and
coalitionally rational. Then, the core of the game v is the set of all such
allocations:

Cw) = {x RN : x(5) > v(S) for all § ¢ N and x(N) = v(N)}. An
allocation is said to be in the anti-core of v if it is efficient and for all
coalitions the reversed coalitional rationality inequalities hold. Then,
the anti-core of the game v is the set of all such allocations: A(v) =
{x eRN : x(S) < v(S) for all S C N and x(N) = v(N)}.

Convexity and concavity (Shapley, 1971) are conditions that have
been extensively studied to prove balancedness. A game (N, v) is said
to be convex if (T U {i}) — v(T) > v(S U {i}) — v(S) for all i € N and
S CT C N\{i}. Agame (N,v) is said to be concave if vu(TU{i})—uv(T) <
v(Su{i})—uv(S)forallie Nand SCT C N \ {i}.

The Shapley value (Shapley, 1953) is a single-valued solution that
has interesting fairness properties. It is the weighted sum of the agents’
marginal contributions to all coalitions. Formally, given a game (N, v),
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the Shapley value Sh(v) assigns to each agent i € N the payoff Sh;(v) =
Tsemn TSR [0S U (i) - u(S)].

A game (N,v*) is the dual game of the game (N,v) if v*(S) =
v(N)—ov(N\ S) for all S C N.

For dual games, it is well-known that the anti-core of v coincides
with the core of v*, and vice versa.

Proposition 1. If v and v* are dual, then A(v) = C(v*) and A(v*) = C(v).
3. The model

We build a model that allows for what we call feasibility externalities,
where the actions of others do not have a direct impact on the revenues
one receives, but these actions might affect the set of actions one can
take.

Formally, each agent i € N can take actions, with the set of possible
actions defined as A;. For each agent, the null action ©; € A; means
that one possible action is to stay inactive. For each S C N, we define
as AS = X,.¢ A; the set of actions jointly available to S and A = AN.

When agents choose their actions, some actions might not be avail-
able. We thus define the feasible set, which depends on the actions of
other agents. More precisely, for all S C N and all ay\g € AM\S,
fslans) € AS represents the set of actions jointly feasible for S. We
suppose that these sets are always non-empty, since for any coalition,
all agents being inactive, Oy, is always available as an action. Since the
coalition N includes all players, we write fy instead of fy(Sy). Let f
represent the set of all such feasibility functions for all coalitions .S. We
impose a feasibility complementarity condition: for all § ¢ N and
ay\s € AN\, ag € fg(ays) if and only if (ag,an\s) € f. In words,
we assume that if a coalition selects first and the remaining agents
select next, the combination of actions is jointly feasible for the grand
coalition. Inversely, a set of feasible actions for the grand coalition must
be such that if N\ S picks their actions in that set first, the remaining
actions are feasible for S. The condition is mild and satisfied by all the
applications in this paper. Consider the following example that fails the
condition: Both .§ and N \ S have a fixed budget to spend, but each
dollar spent by N \ S decreases the budget for .S, while spending by .S
has no impact on N \ S. Suppose that .S picks first and spends all of
its budget, then N \ S does the same. Then, the combination of their
actions is not feasible for the grand coalition.

For each agent i € N we have a revenue function R; : A; —» R. Let
R represent the set of individual revenue functions. Given that we often
have coalitions maximizing their joint revenues, if coalition S chooses
the set of actions ag, we abuse notation and write R;(ag) instead of
R;((ag);) for all i € S.

The grand coalition faces an optimization problem that we generally
write as max,, e, 2ien Ri(ay). We define a problem P as (A, f, R),
which describes the set of actions, the feasibility sets, and the revenue
functions. We suppose that the maximization problem induced by P =
(A, f, R) has a solution. Let P be the set of all such problems (for all
A, f,R).

Example 2. Suppose a simple queueing problem. All agents in N have
one single job to be processed on a machine. The machine can process
one job per period, and agents have linear waiting costs: if agent i’s job
is processed in period ¢, he suffers a cost of 7 X w;, where w; > 0 is his
personal waiting cost parameter.

In this context, we can set A; = {1,...,|N|} to be the set of periods
in which i’s job could be processed.? Then, for any S C N, Ss©n\s)
represents what is jointly feasible for S if N \ § is inactive, i.e., if
their jobs are not processed. We then have that fs(©y\s) is a function

2 More precisely, a; € A; means that the jobs start processing in period a,—1
and is completely processed at time a;.
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05 : S — AS such that 05 # 0].5 for all i, j different in S. In words, no
two agents in .S can be assigned the same processing period.

For ay\s # ©On\s, We have the additional constraint that 05 # a;
foralli € S and j € N \ S. Stated otherwise, the agents in .S cannot
be assigned to a period already occupied by an agent in N \ S.

Finally, we have R;(q;) = —w;q; for all i € N, i.e., each agent has
a disutility w; per period waiting before the job is processed.> We can
thus rewrite the problem of the grand coalition as maxycon) Xicy —0;
w; where O(N) is the set of bijections from N to {1,...,|N|}.

Example 3. We consider agents that share a joint production tech-
nology for a homogeneous good, that they consume in discrete units.
The production technology is represented by a non-decreasing function
C : N — R, that assigns a cost to any quantity of good produced, with
C(0) =0. For each k € N, k > 0, let ¢, = C(k)— C(k—1) be the marginal
cost of the kth unit. Each agent must decide how much he wants to
consume and how much to pay.

In this context we set A; = (g;,r;) where ¢; € N is the amount
consumed and r; € N% assigns to each unit consumed a marginal cost
that is paid by the agent. In particular, r;, indicates which marginal
cost agent i pays for its kth unit. We write ©; = (0, #).

Then, for any S C N, f(©p\s) represents what is jointly feasible
for S if N \ S is inactive, i.e., if they do not consume any good
and pay anything. We then have that fs©ms) = {(@s. {ri}ies) |
Yies Xi ¢, = C(Xics )} In words, fg is a budget set in which
thg>80alition must collect enough money to cover for the cost of the
units it wants to consume. For instance, if we have strictly increasing
marginal costs, then coalition .S can decide to consume no units and
pay nothing, consume one unit and pay any of the marginal costs (as
they are all at least as large as c,), consume two units and pay any two
marginal costs (it cannot twice pay c¢;, but any other pair is feasible),
etc. Of course, if it decides to consume k units, it is optimal to pay for
the first k marginal costs, i.e., just cover the cost of the units consumed.

For ay\s = (qw\s: {7i}ien\s) # On\s> we have that

di

2y

iEN\S k=1
4i>0

qi
Fs@wss ridiens) = Wss (ridies) | D Dien + D)

ieS k=1
4i>0

zc(zq,.+ ¥ q,)

ies ieN\S
In words, the marginal costs paid by agents in .S must be enough to
cover for the cost of the total number of units consumed, net of what
was paid by N \ S. Note that if N \ S just covered the cost of their
consumption, then we need Y ics ZZ’_I ¢, 2C (Z,Es 4+ Xiems q,~)—
4;>0 -

c (ZieN\S ‘Ii)-
Finally, we have R;(q;,r;) = u;(q) — X}, ¢, whereu; : N> Risa
non-decreasing utility function such that u;(0) = 0.

3.1. Externalities

We say that a problem exhibits negative externalities if for all
i€ S CNandall ay\g € fy\5(Os), We have fglay\s) € fs(©n\s)-
Let P~ be the set of all such problems.

We say that a problem exhibits positive externalities if for all
i €S C Nandall ay\g € fy\s5(Os), we have fglans) 2 fs(Ons)-
Let Pt be the set of all such problems.

3 If a, = ©,, then R, = —D, with D arbitrarily large, as the agent’s job is
not processed.
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3.2. Defining cooperative games

It is not always trivial to determine what value to assign to a
coalition. In the presence of externalities, the value depends on assump-
tions we make about the behavior of agents external to the coalition
considered.

In many applied problems, as queueing and minimum cost spanning
tree problems, a simple approach taken consists of coalition .S choosing
either first or after N \ S. If it chooses first, then we have that*
e ; Ry(ag).

If S chooses after N \ S, we specify that the objective of N \
S is not to harm S, but rather to maximize its own revenues. Let
Hs = AZMAXy e ro(o o) Yics Ri(ag) be the set of maximizers when S
is choosing first. Since the feasible set — and thus the payoff .§ might
receive after N \ .S has chosen — depends on which maximizer N \ §
has picked, we define minimum and maximum values as follows:

of(§) =

L

v (S) = max min R;(a
mm( ) asefs(aN\S)”N\SeyN\Si;g 1( S)
and

L

Upax(6S) = max max ZRi(aS).

as€fs(an\s) IN\SEHN\S %

In some applications, the maximizer chosen by N \ S has no impact
on S, in which case we abuse notation and simply write v’.

We illustrate with the following example.

Example 4. We reconsider Example 3 and now suppose that N =
{1,2,3} and that the common technology of production exhibits de-
creasing returns to scale. We describe utility functions by vectors of
marginal utilities and the cost function by a vector of marginal costs.

More precisely, agent 1 has marginal utilities of 6 for the first unit,
3 for the second, and zero afterwards. Agent 2 has marginal utility of
12 for the first unit, 6 for the second, and zero afterwards. Agent 3
has marginal utility of 12 for the first unit, 8 for the second, 4 for the
third, and zero afterwards. The marginal cost of producing the xth unit
isx—1.

We obtain the following values for the games we have defined:

S vk (S) vk (S) vf(S)
{1} 1 2 8

{2} 9 17
{3} 11 13 21
{1,2} 12 12 21
{1,3} 17 17 24
{2,3} 24 24 32
{1,2,3} 34 34 34

We explain some of these values in detail. Starting with v, it is obvious
that a coalition picking first will always choose to pay for the first K
marginal costs if it consumes K units. First, consider vf'({2,3}). The
coalition chooses first, and faces low marginal costs. If it produces 5
units (2 for agent 2 and 3 for agent 3), it obtains 12—-0+12—-1+8-2+
6 —3 +4 —4 =32 1If it produces 4 units (2 for agent 2 and 2 for agent
3), it obtains 12—-0+12—-1+8 -2+ 6 — 3 = 32. It is easy to see that
any other combination yields less net revenues. Thus, v¥({2,3}) = 32
but p(, 3, contains two elements: either the coalition consumes 4 or 5
units, each time paying the first marginal costs.

We now move to %, and v’ . Consider v, ({1}). We suppose that
coalition {2,3} has selected an action that maximizes its own revenue,
which means that it paid for the first K marginal costs if it consumed
K units. For {1} the worst maximizer of {2,3} is for them to consume

4 We suppose, in this problem and in subsequent ones, that the optimization
problem for coalition .S C N has a solution.
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5 units (and pay the first five marginal costs). Agent 1 then faces a
marginal cost of 5 on the first unit consumed, 6 on the second, etc.
Given that, it is optimal to consume a single unit for a net revenue of
6-5=1=0vk ({1}). Moving to v%  ({1}), we now suppose that coalition
{2,3} has picked its maximizer that is most favorable to agent 1, here
consuming 4 units. Thus, agent 1 is now facing a marginal cost of 4
on the first unit consumed, 5 on the second, etc. It is still optimal to

consume a single unit, but the net revenue is now 6 -4 =2 = u[f]ax( {1}.

The following proposition is immediate.

Proposition 5.

1. Forall Pe P~ and all S C N, vk, (S, P) < vk (S, P) <0 (S, P).

max
2. Forall Pe P and all S C N, vF(S,P) <vk (S, P)<vl (S, P)

max

We can see in the previous result that with negative externalities,
choosing first is a favorable scenario, and offers an upper bound, while
choosing last is an unfavorable scenario that offers a lower bound. The
ranking is flipped with positive externalities. Thus, it is natural to use
the following definitions for the optimistic and pessimistic games.

Definition 6.

1. For all P € P~, v”(-, P) = vk, (-, P) and v°(-, P) = vF(-, P).

2. For all P € P*, vP(-, P) = vf (-, P) and v°(-, P) = vt (., P).

max

4, Main results

We provide our main results. We first establish a nice feature of
the first/last games. If we use them as lower/upper bounds, then we
immediately obtain an inclusion result: the set of allocations making
sure that nobody receives more than their upper bounds is a subset of
the set of allocations making sure that nobody receives less than their
lower bounds.

Theorem 7. For all P € P, we have that

@ AL (. P)) cC (¢, P);

max

(i) A(vF(, P)) cc(vk (. P)).

Proof. Fix P, and thus write v¥(S), vl (S) and vL (S) instead of

vf (S, P), vk, (S, P) and vk (S, P). Let b(N) = maXaNZuf); Yien Ri@).
Notice that vf (N) = oL, (N) = 0L (N) = v(N).

We start with part (i).

An allocation x € A (v ) if u(N)—vL (N\S) < x(8) < vl (S) for
all § € N. An allocation x € C (0F) if vF(S) < x(S) < v(N) —F (N \ S)
for all § € N. It is easy to see that A (v ) € C(vF) if and only

if o(N) > vk (§)+ oF(N \ S) for all S C N. Fix coalition S C N

max
and let a}‘v be (one of) the optimal set(s) of actions taken by N. Then,

oN) = Tiew Ri@), 0PN \S) = Tiems R (@b s)) ) =
where a”,

+
Zies R; (aL(S))’ F(N\S)
maximizers when N \ S chooses first and a

after N \ S has chosen a;“_( NS

= ;Ri (‘ZZ(S)) + ;\S R; (“RN\S))

L
and v,

is the best maximizer for .S among the
-Z(S) is a maximizer for .S
We thus have that

ok () +oF(N\S)

max

_ + +
= 2 R; ({aL(S)’aF(N\S)})
ien

< D) Riay)

iEN
= v(N),

where the inequality follows from the fact that, by feasibility comple-
: + +
mentarity, {aL(S),aF(N\S)} € fn-
Next, we show (ii). An allocation x € A (vF) if v(N) — VF (N \ S) <
x(8) < vf(S) for all S C N. An allocation x € C (vk, ) if vk (S) <
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x(S) < v(N)—-vk (N\S). It is easy to see that A (vF) € C (v, ) if and

only if v(N) > mv1£ S) + v,f”.n(N \ S) for all S. The results follows from
the proof of part (i) and Proposition 5. []

Given our definitions of the optimistic and pessimistic value func-
tions, we obtain the following corollary: guaranteeing that no coali-
tion receives more than its upper bound is at least as difficult as
guaranteeing that it receives at least its lower bound.

Corollary 8. Forall P € P~UP™*, we have that A (v°(-, P)) C C (V(-, P)).

Next, we show that when we have negative externalities the anti-
core of the optimistic game is always non-empty.

Theorem 9. For all P € P~, A(1°(-, P)) is non-empty.

Proof. Fix P € P~ and write vf(.S) and v°(.5) instead of vf (.S, P) and
v°(S, P). Since P € P~ we have that v° = vF.

Let .S C N and let a* be (one of) the maximizer(s) for the problem of
the grand coalition and aps) be one of the maximizers when ' selects
first. We show that v°(S) > },c¢ R; (a®).

We have that

(S) = Ri (ars))
ies
2 Z R; (ay)
ies
= Z R; (a*),
ies
where the inequality is by definition of as), since a§ € fs(On\s)-
Since a* is a maximizer for the grand coalition, by definition
Yien Ri(@*) = v°(N). Thus, (R;(a%)),_ s in A@"). O

Combining our two main results, we obtain the following corollary.

Corollary 10. Forall P € P, § # A (V°(-, P)) C C (V°(-, P)).

Thus, with very little structure on the problem other than negative
feasibility externalities, we are able to show the non-emptiness of the
core of the pessimistic game. Negative externalities lead to substantial
benefits from cooperation to improve efficiency, and we can always
distribute these benefits in a stable manner.

On the other hand, the guarantee of a non-empty anti-core does
not carry over to problems with positive externalities, as illustrated in
the counterexamples below. This shows the (possibly) counterintuitive
results that negative externalities yield inherently stable games, while
positive externalities can lead to instability as there is more temptation
to free ride.

Example 11. We modify Example 4 to suppose increasing returns to
scale in production. Suppose the same marginal utilities, but now the
marginal cost of production is 14 for the first unit, 9 for the second, 7
for the third, 3 for the fourth and 1 afterwards.

We obtain the following values:

N vP(S)
{1}
2}

(3}
{1,2}
{1,3}
{2,3}
{1,2,3)

v’(S)

= 00 O OO oo
= 00 O OO ON

5 5

We explain how the values for coalitions {1} and {2,3} are computed.
If agent 1 has to choose first, it faces too high marginal costs, and it
consumes nothing, and v”({1}) = 0. Coalition {2,3}, acting first, will
consume 5 units to generate a net surplus of 12— 14 +12-9+8 -7+
6-3+4—-1=8=0v({2,3}).
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Now, consider v°({1}). We have that coalition {2,3} has consumed
5 units so agent 1 is now facing marginal costs of 1. He consumes 2
units for a gain of 6 —1+3 —1 =7 = v°({1}). Since {1}, when alone,
does not consume, we have that v°({2,3}) = v({2,3}) = 8.

To find an allocation in A(v°), we need y; <7, y, <0 and y; <0,
which are incompatible with y, + y, + y3 = 15, and thus A(°) = .
Notice that here C(v?) # 0.

Example 12. Atay and Trudeau (2024b) provide a variant of the
queueing problem by supposing that agents must buy machines to
queue on, and can buy as many machines as they want. The problem
becomes one with positive feasibility externalities: by itself, a coalition
can only buy its own machines and queue on them; if it joins others,
it can still do so, but can also take advantage of unused time slots on
their machines. Hence, in this case, choosing last corresponds to the
optimistic approach, v° = vL . Atay and Trudeau (2024b) show that
the core of the corresponding pessimistic game is sometimes empty,
sometimes not. By Theorem 7, so is the anti-core of the optimistic game.

The use of both an optimistic and a pessimistic game yields two
(potentially) interesting Shapley values. Their stability depends on the
convexity/concavity of these games.

Proposition 13. For all P € P~ U P* we have:

1. if v°(-, P) is concave then Sh(v°(-, P)) € A (1°(-, P)) C C (VP(-, P));
2. if vP(-, P) is convex then Sh(v’(-, P)) € C (V?(-, P)).

This increases the chances of finding a stable allocation: if we are
interested in v, but it is not convex, we have a backup: if v° is concave
its Shapley value is in the core of the pessimistic game.

5. Applications

In this section, we discuss several applications that exhibit feasibil-
ity externalities. We examine how these applications can be modeled
within our framework, how optimistic and pessimistic approaches have
been defined in each case, and whether our results allow to reinterpret
existing results.

5.1. Queueing problems

We first examine more formally our example of queueing problems.
Consider a set of agents N that each have a job to be processed at
one machine. The machine can process only one job at a time. Each
agent i € N incurs waiting costs w; > 0 per unit of time. The queueing
problem determines both the order in which to serve agents and the
corresponding monetary transfers they should receive (see Chun (2016)
for a survey on the queueing problem). See Example 2 for the definition
of the problem in our framework.

These pessimistic and optimistic approaches have been defined
independently in the literature. Maniquet (2003) built the optimistic
game, using the assumption that a coalition is served before the players
outside the coalition. The minimal transfer rule,> ¢™", is obtained by
applying the Shapley value to v°. Alternatively, Chun (2006) assumes
that a coalition is served after the non-coalitional members, obtaining
the pessimistic game.® The maximal transfer rule,” ¢™%, is obtained by
applying the Shapley value to v?.

We obtain the following results.

5 The minimal transfer rule assigns to each agent a position in the queue
and a monetary transfer. The monetary transfer is equal to half of their unit
waiting cost multiplied by the number of agents in front of them in the queue
minus half of the sum of the unit waiting costs of the people behind them in
the queue.

6 Independently, Klijn and Sanchez (2006) considered the same scenario as
in Chun (2006). They introduced the associated game, the so-called tail game,
and studied its core.
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Theorem 14. For any queueing problem, we have ¢™" € A(1°) C C(vP)
and ¢"** € C(vP).

The results that v° is concave and ¢™" € A(v°) is easily obtained
from Maniquet (2003), while the results that v” is convex and ¢"** €
C(v?) come from Chun (2006). The result that ¢™" € C(v?) can be
obtained by comparing the shares of a coalition to its lower bound;
but by our Proposition 13, the result is obtained without any further
calculations. Hence, we obtain a new justification for the minimal
transfer rule. While both rules offer allocations above the pessimistic
bounds, the minimal transfer allow guarantees allocations below the
optimistic bounds.

5.2. Minimum cost spanning tree problems

We have a set of nodes consisting of N, N v {0}, where 0 is
a special node called the source. Agents need to be connected to the
source to obtain a good or a service. To each edge (i,j) € Ny X N
corresponds a cost ¢;; > 0, with the assumption that ¢;; = ¢;;. These
costs are fixed costs, paid once if an edge is used, regardless of how
many agents use it. The problem is to connect all agents to the source
at the cheapest cost. Given the assumptions above, among the optimal
networks there always exists a spanning tree, hence the name of the
problem. A minimum cost spanning tree (mcst) problem is (IV, ¢), where
c is the list of all edge costs. ¢ is also called a cost matrix.

The set of actions of player i is the set of edges containing node i:
agent i chooses j € N\ i, building the edge (i, j). The usual assumption
is to suppose that a coalition .S cannot use edge (i,j) if k € {i,j}
is such that k € N \ S. Then f(©y\s) is the set of spanning trees
rooted at O that does not use nodes in N \ S, while in f¢(a N\S) for
any ay,g, we also treat agents i € N \ S such that (ay\s); # ©; as
additional sources. Thus, we obtain a problem with positive feasibility
externalities. We complete the representation in our setting by having
R; = —c;,,, i.€., agent i pays for the cost of the edge he builds.

Most of the literature has considered the pessimistic game v, in
which a coalition S connects to the source first, before N \ S. An
exception is Bergantifios and Vidal-Puga (2007b), which considers the
game in which coalition .S supposes that N \ .S has already connected
to the source. In such a case, agents in N \ .S, being connected, act
as sources for S. Thus, how they are connected is irrelevant, and this
game is equivalent in our notation to both vk and vl .

The literature has devoted considerable attention to the notion of
irreducible cost matrix (Bergantifios & Vidal-Puga, 2007a; Feltkamp
et al., 1994): since many edges are not used in any optimal spanning
tree, we reduce the cost of these edges as much as possible, under
the constraint that v”(N) does not change. There is a unique way to
do so, and irreducible edge costs can be obtained as follows: take any
optimal spanning tree, and for each pair of nodes (i, j) € N, look at
the (unique) path from one to the other, and assign to (i, j) the most
expensive edge on that path. We then obtain the irreducible cost matrix
¢. Let 0” and 7° be the pessimistic and optimistic games obtained from
the irreducible cost matrix.

Theorem 15 (Bergantifios & Vidal-Puga, 2007b). For any mcst problem
(N, c), we have

(i) ©” and ©° are dual.
(i) 0° =°.

This leads us, using our results, to the following corollary.

7 The maximal transfer rule assigns to each agent a position in the queue
and a monetary transfer. The monetary transfer is equal to half of the sum of
the unit waiting costs of her predecessors minus half of her unit waiting cost
multiplied by the number of her followers.
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Corollary 16. For any mcst problem (N, c) we have A(1°) = C(0P).

This result is interesting for three reasons. First, C(77) is called
the irreducible core (Bird, 1976), and has been shown to be uniquely
characterized by additivity and monotonicity properties (Bergantinos
& Vidal-Puga, 2015; Tijs et al., 2006). Second, our equivalence with
the anti-core of the optimistic game means that we do not need to
go through the modification of the cost matrix into the irreducible
matrix to obtain the irreducible core. Third, since the game is concave
(Bergantinos & Vidal-Puga, 2007a), the Shapley value is guaranteed
to be in the core of the pessimistic game. This result follows directly
from Proposition 13, without the need to analyze the problem under
its specifications. The resulting allocation rule is the well-studied Folk
rule.

It is also worth noting that the allocation used to prove the non-
emptiness of the anti-core of the optimistic game in Theorem 9 corre-
sponds to the Bird allocation (Bird, 1976) in which each agent pays the
cost of the edge connecting it to its nearest neighbor in its unique path
to the source.

5.3. River sharing problems

Suppose a river described as a line with agents i being upstream
of agent j if and only i < j. There is an entry e; > 0 of water at
each location i, and the water that flows at location i can be consumed
by agent i or allowed to flow downstream. The benefit from water
consumption for agent i is given by a strictly increasing and strictly
concave function b; such that »;(0) = 0. A water sharing problem is
(N, e, b), with the set of players N, the vector of water entries e, and
the collection of benefit functions b (Ambec & Sprumont, 2002). The
problem for the grand coalition is to maximize joint benefits, under the
constraint imposed by the flows of water. If x; > 0 is the consumption
level of agent i, the feasible set is constrained as follows: for any
i € N, that 3, ;x; < X, e;. For a coalition S, if the complement
set is consuming any amount of water, the feasible set is reduced,
and we thus have negative feasibility externalities. Thus, v° = v¥ and

VP = U,ﬁ’.n and by Theorem 9, we already know that .A(v°) and C(v”) are
non-empty.

If coalition .S chooses first, it has access to all water entries in the
river, subject to the physical constraints imposed by the river, i.e., an
agent upstream of a location cannot consume the water entry at that
location. Thus, we obtain that vf(S) = max () Yies bi(x;) under the
constraints that ) = x; <Y, qe; forallies.

If S chooses last, then N\ .S, given that its members are not satiable,
have consumed as much water as they could. The exact maximizer is
thus irrelevant, and we have v* = vl =0k . To define v’ properly we
need the following definition: a coalition is consecutive if for any pair of
agents in that coalition, adjoining agents are also in the coalition. Thus,
we have that vL(S) = 0 if n ¢ S and vL(S) = max >iesn bi(x)

<Y s e g for all i € S" otherwise,
jesn

Xi)ies”

under the constraints that Y, j< x ]
jesn

where S" is the largest consecutive coalition in S that contains n. In
words, if i € .S is such that a member of N \ S is downstream, then
the water entries at i and upstream have all been consumed by N \ S.
Thus, the only group in .S that is able to consume is ", such that all
its members are downstream of all members of N \ S.

The coalitional functions proposed in the literature have been con-
structed from various doctrines used in international law. Under the
unlimited territorial integrity (UTI) doctrine, an agent can consume any
water that flows through its location. vV (S) is seen as an upper bound
on the welfare of .S, and it is easy to see that it corresponds to vf'.

Under the absolute territorial sovereignty (ATS) doctrine, an agent
has absolute rights over the water entering on its territory. For a single
agent i, this implies that he should received at least b;(e;). For larger
coalitions, we suppose that an agent i can transfer water to j only
if j is its immediate downstream neighbor. Otherwise, the water is
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consumed by the agent(s) between i and j. Thus, let I'(S) be the
coarsest partition of .S into consecutive coalitions. Then, vA75(.S)
Yrers) max () >ier bi(x;) under the constraints that isi X
Y sie;forallieT and all T € I'(S). !

/ECCiven the pessimistic constraints in the ATS version of the problem,
vATS(S) is seen as a lower bound on the welfare of S. But it is
immediate that v47$ > v, with, in particular, that vA75(S) = vl(S)
if S is a consecutive coalition containing n and v475(S) > 0 = vl(S)
if S does not contain n. Thus, while pessimistic, vA7 is much less
pessimistic than v’. We thus obtain that:

IA

ATS < UUTI — F 0

v =ol <o v =0

Ambec and Sprumont (2002) define the downstream incremental
allocation rule as follows: yPT = oUT! ({1,...,iH)—oVTT ({1,....i-1}) =
oATS ({1, ...,iH=vATS ({1, ...,i — 1}). They show that it is the unique in-
tersection of A(WVTT)n C(vATS). Trivially, the downstream incremental
allocation is also in the core of our pessimistic game.

The use of vYT! as an upper bound as been criticized (Herings
et al., 2007; van den Brink et al., 2007), as the most upstream agents
can never do better than consume all of their water; the upper bound
prevents them from extracting benefits of letting downstream agents
consume some of their water. Given Corollary 8 which guarantees that
A(°) C C(vP), our results provide an immediate resolution to this
problem: there are stable allocations in C(v”)\.A(v°) that allow for larger
compensations of upstream agents.

In this model v” is a particularly pessimistic function, and only
coalitions containing »n can guarantee a strictly positive lower bound.
The function 047, which offers higher lower bounds, provides a com-
promise between the optimistic (UTI) function and the pessimistic
function.

Our results (the proof of Theorem 9) also provide an allocation in
both A(v°) and C(v?), a no-transfer rule in which each agent simply con-
sumes its efficient amount of water. While it is particularly beneficial
to downstream agents who do not have to compensate upstream agents
for their reduced consumption, it has the advantage of being simple to
compute: if the counterfactuals are difficult to determine, making the
calculation of any other allocation complex or impossible, not imposing
any transfers guarantees a stable allocation.

Many extensions of the model have been considered, including to
cases where some agents can be satiated (Ambec & Ehlers, 2008) and
cases with multiple springs and bifurcations (Khmelnitskaya, 2010).
See Béal et al. (2012) for a review.

5.4. Applications with dual game structure

The applications and examples we have examined so far have all
been such that studying the problem using lower and upper bounds
gave different sets of allocations, and thus the perspective taken mat-
tered. However, in some other cases, the two approaches generate dual
games, and as seen in Proposition 1, it is then unnecessary to study v°
and v? separately. We discuss this duality and show that this duality
can be easily spotted.

In our framework, v° and v” are dual games if and only if for any
coalition S, letting .S pick first and N\ S react to that afterwards always
leads to an efficient outcome. In other words, an optimal outcome can
always be obtained by sequential selfish optimizations by .S and N\ S.

Proposition 17. For a problem P € P~ U P*, we have that v° and
vP are dual games if and only if for all S C N there exists ag and ay\s
such that v°(S, P) = ¥,c5 Ri(ag), V(N \ S, P) = ¥,cns Rilanys) and
{as,ap\slas)} € argmax, ef, ¥ ey Ri(an).

We then have that A (v°) = C (vP).

Two important applications exhibiting duality are bankruptcy
(claims) problems and airport problems.
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The bankruptcy problem deals with sharing an estate E of a perfectly
divisible resource among agents N who have conflicting claims. That
is, the sum of claims is larger than the estate: ).y ¢; > E where ¢;
is the claim of agent i. O’Neill (1982) studied such problems from an
economic point of view. He introduced an associated TU game to each
bankruptcy problem and also defined the run-to-the-bank rule based
on an average over all possible orders on agents’ arrival. Within our
framework, the action of agent i is the amount that he takes from the
estate, which is also his revenue. We thus have a negative feasibility
externality problem.

The optimistic approach corresponds to a bank-run situation, in
which coalition .S arrives first and collects its combined claim or
the endowment, whichever is smallest. The pessimistic approach has
coalition S arriving last, collecting what is left after the bank run of
N\ S. The combination of the optimistic action of .S and the pessimistic
action of N \ S always leads to a full distribution of the endowment,
and thus to an efficient outcome. Following Proposition 17, the two
games are dual.

The airport problem introduced by Littlechild and Owen (1973) aims
to allocate the cost of a landing strip among users with varying runway
length requirements. Every agent i requires a length /; at the runway.
It is assumed that the cost to build the runway is non-decreasing in its
length. That is, for any two agents i and j such that /; < Ly e(y) < ell)).
Within our framework, the action of agent i is the segment of the
runway that he builds, and his revenues is the cost of that segment.®
We thus have a problem with positive feasibility externalities.

The pessimistic approach assumes that coalition S arrives first to
build its runway. The longest runway required by a member of the
coalition will be built, which is max,.g ;. Suppose next that coalition
N \ S picks last. Knowing that a runway of length max;c /; has been
built, it extends it, if needed, to a length of max, , /;. Given the inelastic
demands of our agents, the length of the runway is efficient. Hence, the
optimistic and pessimistic approaches are dual for airport problems.

Recently, Bergantifios and Moreno-Ternero (2025b) studied the dis-
tribution of revenues in streaming platforms. They show that the opti-
mistic and the pessimistic approaches leads to dual games, and conse-
quently, their Shapley values coincide. Based on the problem’s specifi-
cations, Proposition 17 can be used to obtain their result.

We conclude this section by an illustration of the line between
duality and non-duality. In a cooperative production problem, a set
of agents share a production technology to produce some good(s).
This joint production technology might exhibit increasing or decreasing
returns to scale/scope.

As shown in Examples 4 and 11, when the quantities consumed
are endogenously determined (see, for instance, Fleurbaey & Maniquet,
1996; Moulin, 1990; Roemer & Silvestre, 1993), the approach chosen
matters, and a coalition S choosing first and the complement N \ .S
might very well lead to an inefficient quantity being produced and/or
its distribution to agents being inefficient. Thus, we have no duality.

If we suppose that demands for the good(s) are exogenous (see,
for instance, de Frutos, 1998; Moulin, 1996; Moulin & Shenker, 1992),
then producing these inelastic demands is efficient. Given that demands
are inelastic, we always obtain that the same (efficient) total quantity
is produced by having S and N \ S sequentially choose. Thus, the
optimistic and pessimistic games are dual.

8 More precisely, as in minimum cost spanning tree problems, an agent
chooses to connect to an agent or the source. If agent i picks j < i, he would
be responsible for the cost c(i) — c(j). If he picks j > i, the cost is zero. For
coalition .S, the feasible set is such that the combination of choices made by
its members must be such that all agents end up connected to the source.
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6. Concluding remarks

This paper develops a general framework for analyzing operations
research games when the actions of players outside a coalition influence
what that coalition can achieve. By capturing how the feasible actions
of a coalition depend on the behavior of outsiders, our approach unifies
and extends existing modeling assumptions used across a wide range
of applications. The theoretical tools and results we provide establish a
basis for systematically analyzing new and more complex cooperative
situations involving external effects (e.g., pipeline externalities problem
(Trudeau & Rosenthal, 2025) and streaming platform (Bergantifios
& Moreno-Ternero, 2025c). Moreover, the framework is readily ap-
plicable to a wide range of optimization-based problems, including
queueing, minimum cost spaning tree, and resource sharing problems
where externalities are inherent. We believe this foundation can guide
the development of tailored models in future research and facilitate
the implementation of cooperative solutions in practical settings, ul-
timately broadening the scope and impact of cooperative game theory
in operations research.

Moreover, our model can be extended to address more complex
settings. We have considered what we call feasibility externalities,
in which the actions taken affect the feasible sets of other agents.
First, when we have direct externalities, in which the actions taken
by a group directly affect the revenues obtained by other agents, the
additional difficulty is that we have to determine who to credit for
these direct externalities. The main message from our results is that
there is considerable benefit in defining the optimistic and pessimistic
values in a consistent manner: if the combination of what .S chooses in
the optimistic game and what N \ .S chooses in the pessimistic game
is feasible for the grand coalition N, then we obtain the inclusion
result of Theorem 7, even in the presence of direct externalities. The
presence of direct externalities yields multiple definitions of optimistic
and pessimistic functions.

Another extension involves exploring a wider set of coalition be-
haviors. For instance, we may ask: while having a coalition move first
or last provides natural bounds, are these always the true lower and
upper bounds? As they lie beyond the scope of the present paper,
for their conceptualization and further results we refer to Atay and
Trudeau (2024a). The analysis there shows that the “move first/move
last” assumption corresponds to worst- and best-case scenarios in richer
strategic settings. Under natural conditions, these extremes reflect the
actual boundaries of what coalitions can expect, meaning the sim-
plifications often adopted in practice are not only computationally
convenient but also theoretically sound.
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Appendix. Comparison to alpha and beta games

We first examine the classic definitions of a« and # games (Shubik,
1982; pp. 136-138). Firstly, « games are maximin: the complement
N\S first tries to minimize the payoff to .S, and then .S acts to maximize
its payoff. By opposition # games are minimax: S tries to maximize its
payoff, and then the complement N \ S tries to minimize their payoffs.
In our context, they are defined as follows:

v*(S)=  max min R.(ag)
as€fs@an\s) ay\s€fn\s(Os) ,ezs s

and

P(S) = min max Z R;(ag)

an\sEfn\s (as) asESs(ON\s)

Y Rias)

ies

ieS

max
as€fs(©n\s)
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where the last simplification is because of our assumption that there is
no direct externalities. Thus, in v#, N'\ S cannot do anything. However,
in v, N\ S can reduce the value of § if its actions allows to reduce
the feasible set of coalition S.

It is immediate that v# = v. Notice that the definitions of v* and
vém are very similar, with the only distinction being that we suppose
for vém that N \ S can only select from its set of maximizers, while in
v* it can select any actions from its feasible set. Thus, the distinction is
similar to restricting to credible threats. v%  is more optimistic in that
we suppose that N \ .S selects its maximizer that is most favorable to
S.

Example 18. We revisit Example 4. As discussed, v# corresponds to
vf. Here, v* is particularly simple: for each coalition S there exists
a quantity consumed by N \ § such that it raises the marginal costs
so much that it becomes optimal for S to consume nothing. Thus,
v*(S) =0 for all S # N.

The previous example shows that v* is not interesting because
without the constraint of selecting a maximizer, we obtain values that
are too low. In other words, v* is too pessimistic as it considers the
complement set taking non-credible actions.

Notice that when we have positive externalities, the worst that N\.S
can do to .S is to stay inactive, keeping the feasible set of .S as small as
possible, and thus v%(S, P) = v#(S, P) = v¥ (S, P).

We state these observations formally.

Proposition 19.

1. For all P € P~ and all S C N, we have v*(S,P) < v”(S,P) <
v°(S, P) = vf(S, P).
2. Foradll P € P* and all S C N, we have v*(S, P) = v*(S,P) =

vP(S, P) < v°(S, P).

Overall, we can see that v” corresponds to vf, and thus is not consis-
tently optimistic or pessimistic in our framework. v* is too pessimistic
in problems with negative externalities as it allows the complement set
to take non-credible actions.
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