On the vertices of the core of a many-to-one
assignment game”

Ata Atay! Marina Nufez? Tamaés Solymosi 3
July 18, 2025

Abstract

We study the structure of the core in many-to-one assignment games, where
firms with limited capacity hire workers in a transferable utility framework. While
the core in such games is known to be non-empty and admits side-optimal ele-
ments, less is known about its full geometry, particularly the characterization and
enumeration of its extreme points. We provide a graph-theoretic criterion for core
vertices: a salary vector is a vertex of the core if and only if its associated tight
digraph is connected. Building on this, we develop a lexicographic procedure that
generates all core vertices as they are supported by a max-min salary vector.
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1 Introduction

Many-to-one assignment games model two-sided market situations particularly relevant
for labor markets and institutional settings where organizations (firms) hire multiple
agents (workers), but each agent can engage with only one organization. These models
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extend the classical one-to-one assignment game of Shapley and Shubik (1971), which
was originally developed to understand two-sided markets with monetary transfers and
indivisible goods. In their model, each buyer wants at most one unit of good, and
each seller owns exactly one indivisible good.! In the one-to-one case, a comprehensive
theory has been developed around the core, that is, the set of allocations of the total
value of the market that cannot be improved upon by any coalition, and its connections
to competitive equilibrium. One-to-one assignment market games can be extended to
many-to-many assignment markets in two different ways. The first one is known as
the multiple-partners assignment game (Sotomayor, 1992) and each agent can establish
several partnerships, as many as its capacity allows, but each of them with a differ-
ent partner. In the second extension, sometimes known as the transportation game
(Sanchez-Soriano et al., 2001), an agent may establish more than one partnership with
a same agent of the opposite side. In both cases the core is proved to be non-empty.
Notice that our many-to-one situation lies in the intersection of these two extensions
since the unitary capacity of agents on one side rules out the possibility of more than
one partnership between any specific firm-worker pair.

Most of the existing results for one-to-one assignment markets cannot be extended
to the many-to-many assignment markets (Sotomayor, 2002; Sotomayor, 2007): some
core allocations may not be supported by competitive prices and the core may not be
a lattice. However, for the many-to-one assignment games, the core retains desirable
properties such as non-emptiness and a lattice structure based on the partial order on
the set of payoffs to the side of the market where agents have unitary capacity. This
guarantees in that case the existence of an optimal core allocation for each side of the
market. While classical results have focused on the existence and side-optimality of
core allocations, less attention has been paid to the full set of the vertices of the core
polytope. In this paper, we study the structure of the core polytope in many-to-one
assignment games.

We can consider two types of many-to-one assignment markets, depending on which
side of the market has unitary capacity. This does not affect the core, but makes a big
difference when competitive equilibria are considered. If the unitary capacity is on the
side that posts prices, that is sellers or workers, then we are in the many-to-one model of
Sotomayor (2002) and the core coincides with the set of competitive equilibrium payoff
vectors. When the unitary capacity is on the agents that report a demand given some
prices, that is, buyers or firms, then we are in the many-to-one model of Kaneko (1976),
and the core may strictly contain the set of competitive equilibrium payoff vectors (CE
payoff vectors) that now coincides with the set of solutions of the dual linear program
that finds an optimal matching. In this paper we focus mainly on the first case, the job
market with unitary capacity workers of Sotomayor (2002) and hence we indistinctly
refer to “core payoff vectors” and “competitive equilibrium payoff vectors”. Only in the
last section we show that, after some adjustments, parallel results can be obtained to
describe the extreme core points of Kaneko’s buyer-seller market, where buyers have
unitary capacity.

Besides the one-to-one assignment game, the literature contains results regarding the
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set of extreme core allocations for other related combinatorial models, such as ordinal
two-sided markets (Balou and Balinski, 2000, 2002) and minimum cost spanning tree
games (Trudeau and Vidal-Puga, 2017).

The primary goal of this paper is to provide a graph-theoretic characterization of
the vertices of the core in many-to-one assignment games. Our approach introduces
the concept of a tight digraph associated with each core salary vector. This generalizes
insights from earlier work on assignment games, where core extremality could be related
to some graph properties (Hamers et al., 2002). The proofs of some previous results
on the one-to-one assignment game, such as the algorithm to compute the nucleolus in
Solymosi and Raghavan (1994) and the characterization of the core stability in Solymosi
and Raghavan (2001), also rely on the structure of the underlying bipartite graph.

Based on the projection of the core to the space of workers’ payoffs (salaries), and
given a competitive salary vector, we define the tight digraph where the set of nodes
is the set of workers augmented by a node representing their outside option and the
directed arcs are determined by the constraints of the set of competitive salaries that
are tight at that given vector. Then, we show that a competitive salary vector is an
extreme point if and only if the base-graph of the tight digraph (where the direction
of the arcs are ignored) is connected (Theorem 6 (A)). It implies that at an extreme
competitive salary vector there is a worker with zero salary or a worker with a salary
that equals the total surplus it creates with a firm under an optimal matching. We also
provide a necessary and sufficient condition for each side-optimal allocation in terms of
the tight digraph (Theorem 6 (B)).

After that, for each order on the set of workers, we define a payoff vector where each
worker sequentially maximizes or minimizes its competitive salary, preserving what has
been allocated to its predecessors. Making use of the tight digraph, we show that this
set of max-min vectors includes all the extreme competitive salary vectors of the many-
to-one assignment market. This gives a procedure for the computation of these extreme
points and consequently allows for a representation of the entire core.

Before concluding, we move to the other many-to-one assignment market (Kaneko,
1976), let us say a buyer-seller market where buyers have unitary demand. Our results
on the core trivially apply to this case, simply focusing on the projection of the core
to the buyers’ payoffs. We also provide a description of the competitive equilibrium
payoff vectors that allows for a characterization of their extreme points by means of an
extended tight graph.

The rest of the paper is organized as follows. Section 2 provides preliminaries on co-
operative TU games. Section 3 formulates many-to-one assignment markets and games.
Section 4 presents a characterization for any extreme competitive salary vector making
use of the tight digraph. Based on this, we describe a lexicographic procedure to ob-
tain all extreme vectors of competitive salaries, or extreme core allocations, in Section
5. Section 6 extends our previous results to the reverse many-to-one model in Kaneko
(1976), where buyers have unitary demand, and Section 7 concludes.



2 Notations and definitions

A transferable utility (TU) cooperative game (N,v) is defined as a pair where N is a
non-empty, finite set of players (or agents), and v : 2% — R is a coalitional function
such that v()) = 0. The value v(S) represents the worth of any coalition S C N. Since
the player set N remains fixed throughout the paper, we may identify the game with
its coalitional function v. The game (N,v) is said to be superadditive if for any two
disjoint coalitions S,7 C N (i.e., SNT = (), it holds that v(SUT) > v(S) +v(T). A
coalition R C N is called inessential in the game v if it can be written as a nontrivial
partition R = SUT, with S,T # 0 and SNT = (), such that v(R) < v(S) +v(T). In
superadditive games, weak majorization can occur only as an equality. A coalition is
called essential if it is non-empty and not inessential. It is worth noting that singleton
coalitions (i.e., {i} for i € N) are always essential, and any inessential coalition’s value
is weakly majorized by a partition composed entirely of essential coalitions.

For a given game (N,v), a payoff allocation is a vector x € RY assigning a payoff
to each player. The total payoff to a coalition S C N is denoted by z(S) = > a;,
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with the convention z(()) = 0. A payoff allocation z is said to be efficient if it satisfies
x(N) = v(N). The set of imputations, denoted by I(v), includes all efficient allocations
that are also individually rational, that is, x; > v({i}) for alli € N. The core, denoted by
C(v), is the subset of imputations that are coalitionally rational, i.e., x(.S) > v(S) for all
S C N. Since the coalitional rationality conditions for inessential coalitions are implied
by those for essential coalitions, they can be omitted: the core and the essential-core
coincide.

Given a game (V,v), the game (N,v*) defined by v*(S) = v(N) —v(N \ S) for all
S C N is called the dual game. Notice that v*(0)) = 0 and v*(N) = v(N) for any game
(N, v). It is easily seen that the core of any coalitional game coincides with the anti-core
of its dual game, that is,

C(v) = C*(v*) :={z € RY : 2(N) = v*(N), 2(S) <v*(S) VS C N}. (1)

It follows that if ¢ € N is a null player in game v (i.e. v(SU{i}) =v(S) for all S C N,
in particular, v({i}) = 0), its payoff is z; = 0 in any core allocation z € C(v). Indeed,
then v(N) = v(N \ {i}) + v({i}) < z(N\ {i}) + 2; = x(N) = v(N), implying both
(N \{i}) =v(N\{i}) and z; = v(i) = 0.

An order on the set of players N is a bijection o : {1,2,...,n} — N, where for all
i €{1,2,...,n}, 0, = o(i) is the player that occupies position i. For a given order o,
P? ={j € N|o'(j) <o (i)} denotes the set of predecessors of agent i € N. For
each order o on the player set N of game (N, v), a marginal payoff vector m®" is defined
by mg? = v(P7 U{o;}) —v(Pg) for all i € N. Whenever a marginal payoff vector is in
the core, then it is an extreme core allocation.

Hamers et al. (2002) showed that each extreme core allocation of a one-to-one as-
signment game is a marginal payoff vector. Nevertheless, the opposite implication only
holds in convex assignment games.

Nunez and Solymosi (2017) studied other lexicographic allocation procedures for
coalitional games looking for a characterization and a computation procedure of their
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extreme core points. Given a game (N,v) and over the set Ra*(N,v) = {z € R :
z(S) < v(N) —v(N\S) for all S € N} of dual coalitionally rational payoff vectors,
the following lexicographic maximization procedure is proposed: for any order o of the
players, the o-lemaral vector 7% € RY is defined by, for all i € {1,2,...,n},

7Y = max{z, : € Ra*(N,v), xo, =72 "Vl € {1,...,i—1}}, (2)
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which trivially leads to
o =min {v(QU {o:}) —77(Q) : QS P }. (3)

Notice that in the o-lemaral vector, the first player in the order maximizes its payoff on
the set Ra*, the second player maximizes its payoff over those dual coalitional rational
payoff vectors that allocate 73:" to the first player, and so on. It is proved in (Ntifiez
and Solymosi, 2017) that the set of extreme core allocations of a one-to-one assignment
game coincides with the set of lemaral vectors.

3 The many-to-one assignment market and game

A many-to-one assignment market v = (F,W, A,r) consists of a finite set of firms
F ={fi, fa, ..., fm}, a finite set of workers W = {wy,w,,...,w,} where the number
of firms m can be different from the number of workers n, a valuation matrix denoted
by A = (ai)@ erxw Where a;; represents the pairwise income that is obtained when
firm ¢ € F hires worker j € W. Each firm ¢ € F would like to hire up to r; > 0
workers and each worker j € W can work for at most one firm. Let N = FUW be the
set of all agents. We sometimes denote a generic firm and a generic worker by ¢ and
J, respectively. Then, a many-to-one assignment market is described by the quadruple
v= (W, A r).

A matching p for the market v = (F, W, A, r) is a set of F' x W pairs such that each
firm ¢ € I appears in at most r; pairs and each worker 7 € W in at most one pair.
We denote by M(F, W, r) the set of all possible matchings for market 7. A matching
p e M(F,W,r) is said to be optimal for v if >  a;; > > a;; holds for any other

(i.5)€n (i.5)en’
matching ¢/ € M(F,W,r). We denote by M(F,W,r) the set of optimal matchings
for the market 7. Given a matching p € M(F,W,r), the set of workers matched to
firm ¢ € F under p is denoted by u(i) = {j € W | (i,j) € pu}. It is convenient
to represent the set of workers who remain unmatched under p as p(fy), defined by
p(fo) = W\ U,ep (7). Note that if ¢ # k € F, then pu(i) N pu(k) = 0. Therefore, the
union p( fo) U U,cp (i) = W forms a partition of the set of workers.

Given a many-to-one assignment market v = (F,W, A r), we define the income



maximization linear programming problem as follows:

V(F,W) = max Z Z a;ijTij (4)

ieF jeWw

s. t. ZQ?US’/’Z',?;GF
JEW
inj <1, jeWw
ieF

xijZO, (Z,])GFXW

It is well-known that any variable in a basic feasible solution of this linear program,
when the right-hand sides are integers, takes on only integer values. Therefore, due
to the worker capacity constraints, any such variable z;; is either 0 or 1. As a result,
the relation (i,7) € <> x;; = 1 defines a bijection between the set of basic feasible
solutions of the LP and the set of matchings u € M(F, W,r). Hence, the optimal value
of (4) corresponds to the maximum total value of all matched pairs, subject to the firms’
capacity constraints.

Given a subset of firms S C F and a subset of workers T" C W, we define the
corresponding submarket as vy = (5,7, A(sr),rs) where A(sry is the restriction of
the payoff matrix A to S x T, and rg is the restriction of the capacity vector r to the
set S.

Next, we associate a coalitional game with transferable utility (TU-game) to this
type of two-sided matching markets. Given a many-to-one assignment market v =
(F,W,A,r), its associated many-to-one assignment game is the pair (N, v,), where
N = F UW is the set of players and the coalitional function is defined by v,(SUT) =

max > aj; forall S C F and T'C W. When no confusion arises, we denote the
MEM(S,T,T‘S) (1,J)GIUJ

corresponding coalitional function simply by v instead of v, for a given market ~.

We denote coalition S UT with S C F and T'C W by (S,T), in particular, one-
sided coalitions by (@,7) and (S,0). As the union of matchings for disjoint coalitions
results in a matching for the union of those coalitions, that is, if p € M(S,T,rg) and
e M(S, T rg) with SNS" =0 and TNT' = 0, then pU ' € M(SUS,TU
T’ rsust), it follows that many-to-one assignment games are superadditive. On the
other hand, suppose v € M(S,T,rg) is an optimal matching for coalition (S,T), i.e.,
v, (S, T)= > aiy; =2, >, ay. Then,since v,(i,v(i)) = > a;;forallie S, we get

(i,4)€v i€S jev(i) jeu(i)
0 (8.T) = 3 oy o(0).
Moreover, since (S,T) = (0, v(fo)) U ‘ (i,v(1)), where v(fy) denotes the unmatched
workers in 7" under v, and v, (v(fy)) :ZE% = Y. vy(j), we arrive at the following
observations. e

Proposition 1. In many-to-one assignment games, the following types of coalitions are
inessential:

e any coalition containing at least two firms,



e any single-firm coalition containing more workers than the firm’s capacity,
e any one-sided coalition containing at least two players.

This sufficient condition for inessentiality can be summarized by saying that if a
coalition contains a subcoalition that violates any of the capacity constraints, then that
coalition is inessential.

Consequently, in an (m+n)-player many-to-one assignment game, among the 2™ —
1 non-empty coalitions, at most » ", > 1* | (’Z) < 2" —2 coalitions can be essential. This
exponential upper bound is sharp (e.g., when all pairwise income values a;; are positive,
m =2, and n =1 + 13).

We will see in Proposition 2 that the core is already described by a quadratic number
of easily identifiable essential coalitions.

As in any coalitional game, the main concern is how to share the worth of the
grand coalition (i.e., the total income) among all agents. To do so, we focus on the
solution concept known as the core. Unlike in one-to-one assignment games, where
the only essential coalitions are individuals and matched pairs, here (see Proposition 1)
unstability may arise from a group of workers and a firm who can benefit by recontracting
between themselves instead of their prescribed agreements.

3.1 Core and competitive salaries

Given a many-to-one assignment market v = (F,W, A, r) and u € Mu(F,W,r) an
optimal matching, (z,y) € RY x RY is in the core C(v,) of the associated game if and
only if for every firm ¢ € F,

T + Z yj > Z a;; = vy(4,T) for all T C W with |T'| < r;(with equality for T' = pu(i))

JET jET
(5)
and the payoff to unassigned firms or workers is zero.

The above description of the core of a many-to-one assignment game is based on
Proposition 1 and the general equivalence of the core and the essential-core. As we
remarked there, this description is still of exponential size (in the number of players).
Next, we present a quadratic-size equivalent description of the core, just in terms of the
workers’ payoffs. It rests on the observation that in the essential-core description (5)
only those single-firm coalitions are needed for which |7" N u(i)| = r; — 1.

For the sake of exposition, first we balance the model, if needed. In case the total
capacity of the firms ) . . 7; exceeds the number of workers n, we introduce ), 7r; —
n > 0 dummy workers who can only generate zero income with any firm. Exclusively
from this situation, in case of n > »._. r;, we introduce a dummy firm, say fo, requiring
at most ro =n—7_..p7; > 0 number of workers, but who can only generate zero income
with any worker. Technically, if needed, we extend matrix A with » ;. r; —n > 0 full
0 columns, or with one full 0 row. This clearly means that we extend the associated
many-to-one assignment game v with one or more null players. Since the core payoff to
any null player j is z; = 0, the core of the original game is precisely the z; = 0 section of
the core of the extended game, we can assume without loss of generality that the market
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v = (F,W,A,r) is capacity-balanced, i.e. n =), nr; holds. To keep the exposition
simple, we do not introduce any new notation for the possible extended models.

Given a capacity-balanced market v = (F, W, A,7) (n = }_,.p7:), we will always
assume, due to the non-negativity of matrix A without loss of generality, that in any
optimal matching p € Mu(F,W,r) any firm ¢ € F is assigned precisely r; workers
(|(i)] = r;), and no worker is unmatched under u. For any worker j € W, let j* € F
denote the unique firm for which j € u(j#) holds, that is j# = pu=*(4).

The next description of the core in terms of the workers’ payoffs follows easily from
(5) and is a simplification of the one already given in (Sotomayor, 2002) for the general,
not necessarily capacity-balanced, market.

Proposition 2. Given a capacity-balanced many-to-one assignment market v = (F, W, A, r),
let € MA(F,W,r) be an optimal matching. Then, (z,y) € RF x RW is in the core of
the associated game C(v,) if and only if

(i) 0 <y; <aju; foranyjeW;
(11) Yy — y; > ajug, — auj for any j, k € W such that j* # k*;

(1) v, = > (a;; —y;) forallie F.
jen()

Notice that the number of constraints is 2n = Y., 2r; initem (i), >, p1i(n—1;) =
DY iep i — 2 ep s < N*— > cpmi = n® —nin item (i7), and m < n in item (ii7),
altogether at most n? + 2n.

Also, given any vector of salaries y € R" that satisfies constraints (i) and (ii) above
for some optimal matching pu, the payoff to each firm is uniquely determined. Let us
denote by C(W) the set of salaries (or wages) that satisfy (i) and (ii), that is, the
projection of the core to the space of workers’ payoffs. It is proved in (Sotomayor, 2002)
that C(W) is endowed with a lattice structure under the partial order induced by R".
In fact, the reader will see that constraints (i) and (ii) in Proposition 2 define what is
named a 45-degree polytope in (Quint, 1991).

Here is an illustrative example of the above core description.

Example 3. Consider a many-to-one assignment market v = (F, W, A,r) where F' =
{f1, f2}, W = {wy, w9, w3} are the set of firms and the set of workers respectively, and
the capacities of the firms are r = (2,1). The pairwise valuation matrix is the following:

wp w2 ws
_h(8 6 3
A= fo\7T 6 4 )
Since the (unique) optimal matching assigns workers w; and wsy to firm f;, and ws to

firm fy, in any core allocation 1 = (8 +6) — y; — yo and x5 = 4 — y3 hold. Henceforth,
in terms of the workers payoffs, the core is described by the following system (given in



two equivalent forms):

yio Y2 yz = 0
Y1 < 8 = —
Y2 < 6 = <
0 < Y2 < 6
ys < 4 0 = =
—U y3 > —5H=3-28 = ys =
3 < wn —ys < D
Yo Y3 > —3=3-6 5 < B z 5
Y1 —ys > 3=7—4 = Yo —Ys =
Yo —Ys3 > 2=6-—4

Notice the similarities to the one-to-one assignment case, but due to the capacity r| = 2
of firm f;, there is no direct relation between the payoffs to its optimally matched
workers, two-way direct pairwise comparisions are only between workers assigned to
different firms.

Figure 1 illustrates the C'(1W) of this example, where the 45-degree lattice structure
can be seen.

Figure 1: C'(W) for the many-to-one market of Example 3

From the description of the core in Proposition 2, it follows straightforwardly that it
coincides with the set of competitive equilibrium payoff vectors, that is, C'(W) coincides
with the set of competitive salary vectors. To see that, we adapt the usual definition of
competitive prices to our job market setting with salaries.

Let v = (F,W, A,r) be a many-to-one job market, u € M(F,W,r) a matching and
y € RY a vector such that y; is the salary of worker j € W. The pair (u,y) is a
competitive equilibrium for this market if and only if:

1. For each i € F, u(i) € D;(y), where D;(y) is the set of R C W, |R| < r; such that

Z(aij —y;) > Z(aij —y;), for all S C W such that |S| <r; and

JER jeSs



2. y; = 0 if worker j is not assigned by p to any firm ¢ € F'.

We then say that y € R is a vector of competitive salaries and it is compatible with
matching p. It is well known that g must be an optimal matching for v and that the
competitive salary vector y is also compatible with any other optimal matching.

4 The set of extreme competitive salary vectors

Generically, the core of a many-to-one assignment game contains infinitely many allo-
cations, each of them supported by a vector of competitive salaries. In particular, this
is the case when the optimal matching is unique, and then the dimension of the core is
(m+n)—m=n.

Special attention has been paid to the vectors of maximum and minimum competitive
prices (or salaries in our case). For many-to-one assignment market v = (F, W, A, r), as
a particular case of the model in (Gul and Stachetti, 1999), and normalizing at zero the
reservation values of the workers, these two extreme vectors of competitive salaries can
be obtained from

Y =0 (FUW) —v,(FUW\{j}), forall j €W, (6)
Y, = v+ (FUWU{'}) — v (FUW), forall j € W, (7)

where the value v,+; (F'U (W U{j'})) is obtained by duplicating in the valuation matrix
A the column of worker j and looking for an optimal matching among those that do not
allocate the two copies of worker j to the same firm.

It is well known that if all firms have a unitary capacity, then Yy, = vy ((F\ {4"}) U

W) —uv, (F\{j*})U(W\{j})) and the maximum core payoff of the firm assigned to j is
its marginal contribution Z;u. = v, (FUW)—uv,((F\{j#})UW). In the many-to-one case,
those firms with capacity greater than one may not attain their marginal contribution
in the core. Take for instance firm f; in Example 3, since the minimum competitive
salaries are y = (3,2,0), the maximum core payoff of this firm is (8 = 3) + (6 —2) =9
that is below v (FUW) — v, (F\ {A})UW) = 11.

Besides the vectors of maximum and minimum competitive salaries, there may be
several other extreme points in the set of competitive salaries, which correspond to the
set of extreme core allocations. The description of these extreme points gives information
about how large this set is, and how many different stable agreements can be attained in
the market. The digraph we introduce next, associated with each vector of competitive
salaries, provides a characterization of all extreme vectors of competitive salaries, not
just of the maximum and minimum ones.

Definition 4. Let v = (F,W, A,r) be a capacity-balanced many-to-one assignment
market and p € M (F,W,r) be an optimal matching. For each vector of competitive
salaries y € C(W), we define the tight digraph (W, EY) with set of nodes Wy := WU{0},
where 0 is a fictitious worker whose salary is fixed to yo = 0 and with the set of arcs EY
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such that

0 ifj=0keW:
(j,k‘) er Yk — Y = § —Qjuy lf] e W,k =0;
Ajn — Qjuj itjeWke W\,U/(j'u)

This tight digraph is inspired by the one introduced in (Balinski and Gale, 1990)
and also used in (Hamers et al., 2002) to study extreme core points of the one-to-one
assignment game. There, the nodes of the graph consist of the agents on both sides
of the market, not just from one side as we do for the many-to-one case. And also,
their graph is not directed since it is based on the constraints z; + y; > a;; where both
variables have the same sign. They find that the extreme core points are those core
points with a tight graph that has an agent with zero payoff in each component. In our
setting, we replace that property with connectedness to the fixed 0 payoff node, hence
connectedness of the underlying undirected graph (the base-graph) of the tight digraph.
Besides, we also characterize the maximum and the minimum competitive salary vectors
with an (easily verifiable) additional property of the tight digraph.

Before the general discussion, we illustrate the idea and foreshadow the results on
the market situation of Example 3.

Example 5. We revisit Example 3 and introduce a fictitious worker 0 who is optimally
matched to a fictitious firm with capacity 1, denoted 0, because in any matching of the
extended capacity-balanced market the two fictitious agents are required to be paired.
Their payoffs are fixed to 0. The virtual possibility of being matched to the fictitious
agent on the other side will represent the outside option of an agent, thus the pairwise
surplusses with them are set to zero. The extended market, with the optimally assigned
firm-worker pairs boxed, is given on the left below. For brevity, we represent the workers
and the firms by their index. On the right below we present the description of C'(W)
where all constraints are written in a unified way.

—0 +y > 0=0-0

-0 +y2 > 0=0-0

—0 +y3; > 0=0-0

jof1 23] +0 =y > 8=0—8

0“ [[[0]] 0 0 0 rem=1 0 -y >-6=0-6
1] 0]|8][6]3]|rn=2 +0 —y3>—4=0-4
2 10|7 6[4]|r,=1 —1 +ys > —5=3-38
—Y2 tyYs =2 —3=3-06

+y1 —ys=> 3=7-—4

+ys —ys > 2=6-4

Due to this special structure, we associate a directed graph that represents by arcs
the inequalities which are tight (satisfied as equality) at a given y € C'(W) and decide
if y is an extreme point by checking whether the base-graph is connected.
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Recall that in this market the minimum competitive salary vector is (3,2,0) that
makes the following inequalities tight: —0+y3 =0, y1 —y3 = 3, and y» — y3 = 2. The
associated digraph is pictured on the left in Figure 2. At the maximum competitive
salary vector (8,6,4) the following inequalities are tight: 0 —y; = —8, 0 — yo = —6,
0 —y3 = —4, and y — y3 = 2. The associated digraph is pictured on the right in Figure
2.

Figure 2: digraph of minimum vector (3,2,0), digraph of maximum vector (8,6,4)

In both cases the base-graph is connected. Notice that in the tight digraph of the
minimum competitive salary vector (3,2, 0) node 0 is the only source, while in the tight
digraph of the maximum competitive salary vector (8,6,4) node 0 is the only sink.

Similarly, the tight digraphs associated with CE vectors (3,3,0) and (7,6,4), pic-
tured, respectively, on the left and on the right in Figure 3, are both connected. Thus,
both vectors are also extreme points of C'(W). However, in neither of these tight di-
graphs node 0 is the only source or the only sink.

Figure 3: digraph of extreme vector (3, 3,0), digraph of extreme vector (7,6,4)

Indeed, in case of (3,3,0), node 2 is also a source, indicating that none of the
constraints which contains —ys is tight, hence y, can be decreased (with a sufficiently
small positive amount) without leaving the feasible solution set. Therefore, (3,3,0)
cannot be the minimum competitive salary vector. Similarly, in case of (7,6,4), node 1
is also a sink, indicating that none of the constraints which contain +y; is tight, hence
y1 can be increased (with a sufficiently small positive amount) without violating any of
the lower-bound constraints. Therefore, (7,6,4) cannot be the maximum competitive
salary vector.

We now formally establish the characterization of the extreme vectors of competitive
salaries of the many-to-one assignment game by properties of the corresponding tight
digraphs (Definition 4).
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Theorem 6. Let v = (F,W, A,r) be a capacity-balanced many-to-one assignment mar-
ket in which p is an optimal matching. Then

(A) y € C(W) is an extreme vector of competitive salaries if and only if the base-graph
of the associated tight digraph (Wy, EY) is connected.

(B) y € C(W) is the minimum vector of competitive salaries if and only if its tight
digraph (Wy, EY) contains a 0-sourced directed spanning tree (i.e. all arcs of the
spanning tree are directed away from node 0).

(C) y € C(W) is the maximum vector of competitive salaries if and only if its tight
digraph (Wo, EY) contains a 0-sinked directed spanning tree (i.e. all arcs of the
spanning tree are directed towards node 0).

Proof. First, we prove the “only if” part of characterization (A). Suppose on the con-
trary that the base-graph of the tight digraph associated with an extreme vector y €
C'(W) is not connected. Then let W’ C W be the node set of a component which does not
contain node 0. Now, let us define ¢ = min{(yx—y;)—(ajup—aju;) : 5 € W',k € Wo\W'},
with yx = aju, = 0 if & = 0. Since there are no arcs between W’ and the rest of the
nodes Wy \ W', we have ¢ > 0. If we define y; = y; + ¢, yj = y; — ¢ for all j € W', and
v, = yp =y for all k € Wy \ W', both vectors ¢’ and 3" also belong to C(W). However,
Yy = %y’ + %y” € C(W), which contradicts the assumption that y is an extreme point.

Second, we prove the “if” part of (A). If the base-graph of the tight digraph associ-
ated with a vector y € C'(W) is connected, then there is a path from node 0 to any node
j € W, that is a sequence of nodes 0 = jg, j1,...,Jx = J with £ > 1 such that any two
consecutive nodes are the two endpoints of an arc. If (jpjp11) € E* (0 < h < k—1) then
it is called a forward arc, if (jpi1jn) € E* (0 < h <k — 1) then it is called a backward
arc. In case nodes j, and jn41 (0 < h < k—1) are connected by both types of arcs in the
tight digraph, we choose one of them arbitrarily for the path. If we add the equations
Ynil — Yn = Gpupp1 — apup related to the forward arcs in this path, and subtract the
sum of the equations y, — yn41 = a(ht1)#n — A(hs1)nn41 related to the backward arcs, all
variables yj,, 1 < h < k—1 (if any) cancel out, only y; —yo = y, remains on the left side.
Thus, we get y; = Z(h,h—i-l)eE# (ah#h—i-l - ah#h) - Z(h—i-l,h)eE# (a(h+1)ﬂh - a(h+1)uh+1)' Since
all salaries y; (j € W) are uniquely determined by the tight constraints, their vector y
is an extreme point of C(W).

We only prove the characterization for the minimum vector of competitive salaries
in (B), the proof for the maximum vector in (C) goes in an analogous way.

Assume first that y € C'(W) is the minimum vector of competitive salaries. If there
is a node j € W with no incoming arc then all constraints in which y; appears with +1
coefficient are satisfied as strict inequalities, so while keeping all other variables fixed,
we can decrease y; with a sufficiently small positive amount without violating any of
these constraints. Besides, we actually increase the left hand side of those greater-or-
equal inequalities in which y; appears with —1 coefficient, and we do not change the
left hand side of the rest of the constraints. This would contradict the minimality of y;.
Thus, none of the nodes 7 € W can be a source at the minimum vector of competitive
salaries. A similar argument shows that there must be an arc going out from node 0,
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for otherwise we could decrease all salaries y; (j € W) with a sufficiently small positive
amount without violating any CE constraint, again a contradiction to the minimality of
vector y. Combining these two observations with the finiteness of the number of nodes,
we conclude that there must exist a directed path (i.e. containing only forward arcs)
from node 0 to any node j € W, implying that the tight digraph (Wy, E¥) must contain
a 0-sourced directed spanning tree.

To see the converse implication in (B) for the minimum vector of competitive salaries,
assume that for an arbitrary y € C(W) the associated tight digraph (Wy, EY) contains a
0-sourced directed spanning tree. Then there exits a directed path 0 = jg,71,...,Jk = J
with £ > 1 from node 0 to any node j € W containing only forward arcs. Thus, if we
add the related inequalities y;,,; — 1, > @pups1 — apep, along this directed path, we get
Yi = 2o(hni1yern(@hens1 — apnp) for any feasible vector y' € C(W). For the selected
y € C(W), all these constraints hold as equalities, thus, y; = min{y} : ' € C(W)} for
all j € W, implying that y € C(W) is the minimum vector of competitive salaries. [

We remark that a tight digraph might contain a directed cycle, which might even
contain node 0, but only if there are alternative optimal matchings in the many-to-one
assignment market. If the optimal matching is unique, like in Example 5, node 0 is either
a source or a sink (but not both) in the tight digraph associated with any extreme salary
vector.

We conclude this section with an immediate consequence of Theorem 6.

Corollary 7. Let v = (F,W,A,r) be a capacity-balanced many-to-one assignment
market in which p is an optimal matching, and let y € C(W). If y is the vector of
minimum (resp. maximum) competitive salaries, then there is a worker j € W with

salary y; = 0 (resp. y; = aju;).

5 The max-min salary vectors

In this section we intend to compute the set of extreme core allocations or, equivalently,
extreme competitive salary vectors of the many-to-one assignment markets. A natural
first approach is to consider the relationship between the extreme core allocations and
some lexicographic allocation procedures. This approach has been applied by (i) Hamers
et al. (2002) to show that each extreme core allocation of a one-to-one assignment game
is a marginal payoff vector and by (ii) Izquierdo et al. (2007) to see that each such
extreme point is the result of a lexicographic minimization procedure on the set of
rational allocations: for each order on the set of agents, let the payoff to the first player
in the order be zero and, for each following agent, compute the minimum payoff that
satisfies all core inequalities with his/her predecessors while preserving the payoffs that
they have already been allocated. More recently, (iii), Niinez and Solymosi (2017) prove
that each extreme core allocation of the one-to-one assignment game is the result of a
lexicographic maximization over the set of dual rational allocations (lemarals). However,
it is easy to find examples (see Example A in the Appendix) showing that none of these
three procedures allows to describe all the extreme core allocations of many-to-one
assignment markets.
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The characterization of the extreme competitive salary vectors of the many-to-one
assignment game by means of the tight digraphs given in Theorem 6 will allow to
describe a procedure to obtain all these extreme points. We will see that the extreme
competitive salary vectors of these games also correspond to a sequence of lexicographic
optimization, where for each given order, some workers maximize their salary while
some other workers minimize it, always preserving what has been allocated to their
predecessors.

There are two main differences between the following definition of the max-min
salary vectors and the lexicographic procedures applied to the one-to-one assignment
game: only workers are now considered and each order on the set of workers must
be completed with an indication of whether the worker in this position maximizes or
minimizes his/her salary.

Let 6 :{1,...,n=|W|} — W be an order on the set of workers, where 6(7) is the
worker in the ith-position, and we can also write 0 = (ji, jo, - .., jn). We denote by Xy,
the set of all orders on W. Given a worker j € W, P{ ={k e W | 07" (k) < 07'(j)} is
the set of predecessors of j according the order 6.

Then, an extension of the order 6 is

0:{1,....,n=|W|} — W x {min, max}
(6(i), min) = 6(:)
i = A=< or
(0(i), max) = 6(7),
where 0(i) means that worker is in ith position and will minimize his/her salary under
some constraints. Similarly, (i) means that the ith player in the order will maximize
his/her salary under some constraints. We denote by iw the set of all extended orders

on W. Clearly, |Sy| = n! and [Sy| = n!- 2", where n = |W| is the number of workers.

Definition 8. Let (F,W, A,7) be a capacity-balanced many-to-one assignment game,
v an optimal matching, & = (j1, j2,...,jn) an order on W and 6 an extension of ¢. The
related maz-min salary vector y° satisfies

and for all 1 <r <n,
yé - manereT,j“;éjﬁ{yj — Qjuj + Qjng, s O} if QN(T) = (7")
IJr mln]EPfT,J“#Jﬁ{y] — a’]#] + a’]#]r’ a’]#]r} if 9(7“) = (T)

To give an interpretation to these vectors, recall from Proposition 2 that the core

constraints worker j, must satisfy are 0 < y; < a;+; and

Qjuj, — Qjuj Y5, — Y5 < agej — age;, for all j € W, gt &£ gt

Then, when we reach worker j,. following order ¢, the max-min vector procedure only
considers the core constraints with variables from Pﬁ U {j,} and determines a payoff
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(salary) for j, that satisfies (in a tight way) either one lower core bound or one upper
core bound, depending on whether the extended order 6 determines j, is a maximizer or
a minimizer. Since all y; values for j € Pﬁ, have already been set, finding y;, amounts to
the elementary optimization problems given in the above definition. It is not surprising
that a max-min salary vector may not be in C'(W), since one half of the core constraints
are not checked during the procedure that builds such vector. However, we show next
that if a max-min salary vector is competitive, then it is an extreme competitive vector.
This same property (the fact that when they are in the core, they are extreme core
points) is satisfied by the marginal worth vectors in arbitrary coalitional games and by
the max-payoff vectors (Izquierdo et al., 2007) in one-to-one assignment games, which
are also collections of vectors that are defined for each possible order on a player set.

Proposition 9. Let v = (F,W, A,r) be a capacity-balanced many-to-one assignment
market, . an optimal matching, 6 an order on W and 6 an extension of . Ify? € C(W),
then y? € Ext(C(W)).

Proof. Let y’ € C(W). By definition of the max-min vectors, at each step of the
procedure one core constraint is tight at y?. Moreover, these equations are linearly
independent since each of them involves a new worker whose salary does not take part in
the previous equations. Since the membership in C(W) is guaranteed by the assumption,
the fact that n linearly independent constraints are tight at ¥’ implies that this is an
extreme point of C(W). O

Now the question is whether all extreme points of C'(W) in a many-to-one assignment
market are of this type, that is, all are max-min salary vectors related to some extended
order on the set of workers. Let us consider again the market of Example 3.

Example 10. Consider again the many-to-one assignment market v = (F, W, A, r) with
set of firms F = {f1, fo} with capacities r = (2,1), set of workers W = {wy, wq, w3}
with unitary capacity and pairwise valuation matrix

w1 W W3
8 6 3
A= h .

fo\7T 6 4
We can obtain the extreme core points from the picture of the salary-core in Figure 1
and then check that all core vertices are supported by max-min salary vectors. Another
approach is to compute for each of the 3!- 23 = 48 extended orders the associated max-
min salary vectors and check their core membership. The result of this tedious but
computationally straightforward excercise is given in Appendix B. It shows that all 9
extreme core vectors in this market are supported by max-min salary vectors, they are
obtained from 28 extended orders, while the remaining 20 extended orders determine

max-min salary vectors outside the core.
In the following table we indicate for each core vertex all extended orders such that
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the related max-min salary vector supports that vertex.

‘xl T ‘ Y1 Y2 Y3 H extended order

0 0|8 6 4 |(1,2,3)in any permutation, (1,3,2),(3,1,2),(3,2,1)
0186 31(1,23),(21,3),(1,3,2),(2,3,1)

11185 3](1,32)
10|764](231),0321),012),0312),6,21
21166 3](23,1)

9 4[320]321),3L2)

740520321612

6 415301(3,21),(3,1,2)

8 413301(321),(312)

Characterization (A) in Theorem 6 offers explanations not just for the various multiplic-
ity a given extreme core vector appears as max-min salary vector, but, more importantly,
why the full enumeration of max-min salary vectors will always provide all extreme core
vectors (see Theorem 11 below).

Take for instance extreme competitive salary vector (7,6,4) and consider its tight
graph drawn in Example 5. It has 4 arcs on 4 nodes, so its connected base-graph admits
multiple spanning trees. We see that any of these spanning trees contains arc (3, 1) and
two of the other three arcs (which form a cycle). For instance, the spanning tree with
arcs (2,0), (3,2), (3,1) allows only the order (2,3,1) and make arcs (2,0) and (3,2)
backward arcs and arc (3,1) a forward arc. If, starting from node 0, we reach a node
with a backward (resp. forward) arc, we set to maximize (resp. minimize) the payoff for
that worker. Thus, in this case we get the extended order (2, 3,1). The related max-min
salary vector is computed as follows:

Yo = app =0,
ys = min{ys — agn + ag3, ass} = min{4,4} =4,
y1 = max{ys — ass + as,0} = max{7,0} = 7.

On the other hand, the spanning tree with backward arc (3,0) and forward arcs (3, 2),
(3,1) allows two extended orders compatible with the partial order induced by this
0-rooted spanning tree, namely (3,2,1) and (3,1, 2).

This example also shows that not all max-min salary vectors belong to the core, and
hence they may not lead to an extreme core allocation. Take for instance the extended
order § = (1,2,3). Then,

1 = 07
y2 = a2 =06,
Ys = max{y1 — ar + ai13, Y2 — A12 + a3, 0} = max{—5, 3, 0} = 3.

The related max-min salary vector is yé = (0,6, 3) and it does not lead to a core payoff
since the constraint y3 — y; < ass — as;, which was ignored when y3 was minimized, is
not satisfied.
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Next theorem shows that although a max-min salary vector may not be an extreme
core allocation, the converse inclusion always holds. As the example above illustrates,
every extreme core point is supported by a max-min salary vector related to one extended
order, or maybe to several of them.

Theorem 11. Lety = (F,W, A, r) be a capacity-balanced many-to-one assignment mar-
ket and p an optimal matching. Then,

Ext(C(W)) € {4} e, -

Proof. Let y € Exzt(C(W)) and consider the related tight digraph (W, EY). From
Theorem 6 (A), the base-graph is connected, hence there exists j; € W such that at
least one of (0,j1) € £Y, meaning y;, = 0, or (j1,0) € EY, meaning y;, = a;x; , holds. If
both relations hold, we pick one of them. In the first case define (1) = (1) = j; and
in the second case (1) = 6(1) = j;. Notice that in both cases ¥ o=y

For 1 < r < n — 1, assume by induction hypothesis that there exists 0 e iw with
0(k) = ji for all 1 < k < r such that yg(k) = y?k = y;,, and show this also holds for
r+ 1.
Case 1: There exists some j € W\ {j1,72,...,4-} and some jx € {j1,72,...,jr} such
that (jx,j) € EY.

In this case, y; — y;, = a;»; — a;»;,, which implies y; = y;, + Qjpj = Qg . Then,

N Vi) Fh gk
set O(r + 1) = 0(r + 1) = j, that is, j,.1 = j, and notice that, since y is a vector of
competitive salaries, the inequalities y; > 0 and y; > y;, + ajpj — Qg hold for all

Jn € {j1, ..., jr} with j # j*. This guarantees that y; , = yfrﬂ.

Case 2: There exists some j € W\ {j1,72,...,4-} and some jx € {j1,72,...,j-} such
that (],jk) e kY.

In this case, y; — y;, = aju; — ajuj,, which implies y; = y;, + a;jn; — ajuj,. Then,
set O(r + 1) = O(r + 1) = j, that is, j,; = j, and notice that, since y is a vector
of competitive salaries , the inequalities y; < aju; and y; < y;, + aju; — aju;,, for all
gn € {j1,- -, Jr} with ji # j#, hold. This shows that y;, ., =35 .

By connectedness of the base-graph at least one of the above two cases holds, if both
hold, we pick one of them, and continue building the spanning tree till all nodes in W
are reached. An extended order is constructed such that the associated min-max vector
coincides with the extreme core vector y, and our inductive proof ends. O

A consequence of the above theorem is that each extreme core point of a many-
to-one assignment game is the result of a (computationally very simple) lexicographic
optimization procedure carried out by the workers over the core. This somehow resem-
bles the one-to-one assignment game, where each extreme core point can be obtained
from a lexicographic maximization or also from a lexicographic minimization over the
core. But, in both cases, all agents, firms and workers, take part in the optimization
procedure.

In particular, given a market (F, W, A,r), if we take any order § on W and consider

the extended order § = (6(1),6(2),...,6(n)), the related max-min salary vector y?
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satisfies yg(k) < o) for all (z,y) € C(vy). This is because each worker’s payoff at y?
tightly satisfies some lower core bound, given the payoff of his/her predecessors. As a
consequence, whenever yé belongs to the core, it is the worst core allocation for workers,
and hence the vector of minimum competitive salaries, that supports the firm-optimal
core allocation. Similarly, the worker-optimal core allocation follows from some yé where

6= (0(1),002),....0(n)).

6 Kaneko’s many-to-one buyer-seller market

The first many-to-one assignment game in the literature appears in (Kaneko, 1976), as
a market between buyers and sellers where each buyer demands only one unit while
each seller may have several units on sale, even from different types. If we assume for
simplicity that the goods owned by a seller are of the same type, Kaneko’s many-to-one
assignment game is analogous to our job market assignment game from the perspective
of the core and the theory of coalitional games.

Let B and S be the finite and disjoint sets of buyers and sellers respectively, A =
(aij)(i,j)eBxs the pairwise valuation matrix and 7 = (r;),cs the capacities of the sellers.
Assume the market is capacity-balanced, that is 3 ;o 7; = [B|. By projecting the core
of this game to the payoffs of the buyers (which is now the side with unitary capacity
agents) analogously to Proposition 2 we obtain that (z,7) € R? x R is in the core
of the associated game C(v,), where v = (B, S, A,r), if and only if, for any optimal
matching p,

(i) 0 <x; < apuy forany i€ B;
(ii) @r — 7 > apue) — aiue) for any i,k € B such that u(k) # pu(i);

(ili) y; = > (aj; — ;) for all j € S.
i€jh

From this description of the core of Kaneko’s assignment market, that we may call
the buyers core C(B), it follows the possibility of defining the tight digraph associated
with each core element. Now this graph at z € C(B) will have set of nodes B and
directed arcs related to those core inequalities that are tight at x, in a way analogous
to Definition 4. As a consequence, we obtain a characterization of the extreme core
allocations by means of the connectedness of its base-graph, and characterizations of
the buyers-optimal core element and the sellers-optimal core element parallel to those
in Theorem 6: = € C(B) is the minimum core payoff vector for buyers if and only if its
tight digraph contains a 0-sourced directed spanning tree, and it is the maximum core
payoff vector for buyers if its tight digraph contains a 0-sinked directed spanning tree.

Also, a set of max-min payoff vectors {xe}éei can be defined, one for each extended
order on the set of buyers, and each extreme element of C(B) is proved to be of this
type, in a result parallel to Theorem 11.

However, regarding the set of competitive equilibrium payoff vectors, the two models
clearly differ. Kaneko (1976) already shows by means of an example that although every
competitive equilibrium payoff vector is in the core, not all core elements are supported
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by competitive prices. This is quite straightforward since in the above core description,
two units from the same seller j € S that are sold to two different buyers i,k € B
may have different price: a;; — x; and ay; — . It is easy to see that the subset of core
elements where the units of each seller are sold at the same price is the set of competitive
equilibria payoff vectors.

Proposition 12. Let v = (B, S, A,r) be a capacity-balanced many-to-one assignment
market where buyers have unitary capacity and p an optimal matching. Then, (z,y) €
RE x RY is a competitive equilibrium payoff vector if and only if

(1) 0 <y < e for any i € By
(1) Ty — T > rp) — Gipey for any i,k € B;
(111) y; = > (aij — ;) forall j € 8S.
i€jr
Notice that the difference with the core, and with the CE equilibrium payoffs of
our initial many-to-one job market, lies in the fact that inequality (ii) is required for
each pair of buyers, not just for those that are not optimally matched to the same
seller. This implies that if i,k € B are such that u(i) = p(k) = j, then (ii) gives

T — Ty = Apu(k) — Qip) Which means that both units are sold at the same price: p; =
Okp(k) — Tk = Aip(i) — Li-

Example 13. Consider the market v = (B, S, A,r) where the set of buyers is B =
{b1,ba, b3}, the set of sellers is S = {s1, s2}, the capacities of the sellers are r = (2, 1)
and the valuation matrix is

51 S2
by (8 7
A= bl 6 6
bs\ 3 4
There is only one optimal matching = {(by, s1), (bs, $1), (b3, s3)} and the core of this

market consists of the set of payoff vectors (z,y) € R3 x R? such that

0<2 <8 3<z; —23<5H y1 = (8 —x1) + (6 — x9)
OSCL’QS6 2§[L‘2-ZL’3§3 y2:4—$3 (8)
O§$3§4

Notice that the valuation matrix is the transposed of Example 3, and the capacities
of sellers coincide with those of firms in that initial example. As a consequence notice
that C(B) coincides with C(WW) there. Hence, in our buyer-seller market, (Z,y) =
(8,6,4;0,0) is the best core allocation for buyers while (z,7) = (3,2,0;9,4) is the
best core allocation for sellers. However, in (z,7), s; sells one unit to b; at the price
Py, = a11 — 1 = D and sells a second unit to by at the price pyp, = a9 — x2 = 4, which
means that (3,2,0;9,4) is not supported by a competitive equilibrium.

To obtain the set of CE payoff vectors of this example, C E(B), we only need to add
to the set of inequalities (8) the fact that the two units of s; are sold at the same price,
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8 —x1 = 6 — x9, that is x; — x9 = 2. By representing C F(B), it is easy to check that it is
the polytope spanned by the following four extreme vectors: (4,2,0), (5,3,0), (8,6, 3),
and (8,6,4). Then, the minimum CE payoff vector for the buyers is (4,2, 0), related to
the CE prices p; = py = 4.

Notice that the maximum payoff of the buyers in the core, (8,6,4) satisfies the
additional equation x1 — x5 = 2 and hence it is supported by a competitive equilibrium
and it is also the maximum CE payoff for buyers related with the minimum CE prices
that are p; = ps = 0.

We can provide a sufficient condition in terms of the pairwise valuation matrix that
guarantees that all core allocations are supported by competitive prices.

Proposition 14. Let (B, S, A,r) be a capacity-balanced many-to-one assignment market
where buyers have unitary capacity, and p an optimal matching. Then C(B) = CE(B)
if for all j,j' € S and i, k,7" € B such that pu(i) = p(k) = j and u(i'") = j' # j it holds

akj/ + (Ii/j Z akj + ai/j/, (9)
Q0 + Qi g 2 Q5 + Qi gt (10)

Proof. Take z € C(B). From the core constraints, together with (9) and (10), we get

rp— ;= (T — xp) + (0g — x) > agyp — apy + apj — a;; > ag; — a;j, and

Ty = = (Ti — ) + (To — Th) 2 Qi — Qg + Qirj — Ay > aij — ag;,
which proves that zj, — x; = ap; — a;;. ]

Our previous characterization (Theorem 6) of the extreme competitive salaries of
the multiple-partners job market can be straightforwardly extended to the extreme
competitive buyers’ payoffs of Kaneko’s buyer-seller market, simply defining the tight
digraph of a CE payoff vector using all the inequalities in Proposition 12. Take, for
instance, the extended tight digraph of the minimum CE payoft vector for buyers in
Example 13 (see Figure 4) and notice that it has a unique source.

Figure 4: Extended tight digraph of the minimum CE payoff vector (4,2,0).
Similarly, the definition of the max-min vectors in Definition 8 can be modified by the

omission of the condition j# # j*. Then, a result analogous to Theorem 11 guarantees
that each extreme point of CE(B) coincides with one of these max-min vectors.
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7 Concluding remarks

The described procedure of the max-min salary vectors provides all extreme core allo-
cations. Since all orders on the set of workers must be considered, this is not a very
efficient procedure. Nevertheless, compared to the well-studied maximum and mini-
mum competitive salary vectors, it allows to find other combinations of competitive
salaries where the payoff of some workers is maximized while for others it is minimized,
everything according to a given order of priority.

An interesting direction for future research is to characterize core stability using
matrix properties. Solymosi and Raghavan (2001) introduced a condition known as
the dominant diagonal property and used graph-theoretical tools to characterize core
stability in one-to-one assignment games. Later, Atay (2017) provided an alternative
proof based on the properties of the buyer-seller exact representation of an assignment
game, as defined in Nunez and Rafels (2003). Extending this line of work, future research
could explore many-to-one assignment games with the dominant diagonal property to
examine the robustness of the core.

Appendix A

This example shows that, for many-to-one assignment markets, neither all lemaral vec-
tors are extreme core allocations nor all extreme core points can be obtained as lemaral
vectors for some given order on the agents. Consider the market v = (F, W, A, r) where
F=A{fi, fo}, W = {wy,ws} are the set of firms and the set of workers respectively, and
the capacities of the firms are r = (2,1). The per-unit pairwise valuations are given in
the following matrix:

wy w2

_h(4 3
A‘fl(:s 2)'
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The corresponding many-to-one assignment game (N, v,) and its dual game are:

*

V|T1 T2 Y1 Y2 |V
o1 . 4
0 1 . 0
0 .1 .14
0 . 13
0] 1 1 7
411 . 1 5
311 . . 114
3 1 1 4
2 1 . 1]3
0 .1 17
411 1 1 7
311 1 117
71 . 1 117
3. 1 1 1|7
7111 1 117

The marginal payoff of firm f; is 4 = v*(f1) = v(N)—v(N\ f1) but it is not achievable in
the core since the core-maximum for firm f; is maxc z; = 2 = v*({fo}) +v*({f1, w1 }) +
v*({f1,w2}) — v*(IN). This shows that the marginal payoff of a player to the grand
coalition may not be the core maximum payoff of the corresponding player for the
many-to-one assignment game.

Now, take any order that starts with the firm fi, o = (f1, arbitrary). For that given
order, the payoff of f; is 4 which cannot be attained at a core allocation. Hence, a
lemaral obtained by an order o = (f1, arbitrary) cannot be a core allocation.

Next, take the extreme core allocation (2,0;3,2). Notice that mingy, = 2 =
v({f2, wa}) + v({f1, w1, w2}) — v(N) and both f; and f, obtain their core maximum
allocations, and hence (2,0;3,2) is an extreme core allocation. We will try to construct
a lemaral vector (z,y) € RY that coincides with the aforementioned extreme core allo-
cation. First notice that f5 is the only player that is paid her marginal payoff. Hence,
we only take into account orders that start with player fs:

e Player 2 achieves her marginal payoff under an order o = ( fy, arbitrary): o =0,
e 0= (fa f1,...): Then,
zp = min{v"(f1), 0" ({f1, fo}) — w2} = min{4,7 - 0} =4 #2 =1y,
e 0 = (fo,wy,...): Then,
y1 = min{4,4 — 0} =4 # 3 =y,
e 0 = (fy,wy,...): Then,
yo = min{3,3 — 0} =3 # 2 = ys.
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As a consequence, there does not exist an order to construct a lemaral vector that
coincides with the extreme core allocation (2,0;3,2). One can find a similar example to
show that some extreme core allocations cannot be obtained as a result of a max-payoff
vector (Izquierdo et al., 2007).

Appendix B

All max-min salary vectors in the market from Example 10:

ext. order | y; y2 y3 | in core? ext. order | y; y2 y3 | in core?
(L.23) |00 0] - (L32) |02 0] -
(1,23) [00-3 - (1,3,2) |03 0 -
(L23) |06 3| - (L,32) |05 -3 -
(1,2,3) |0 6 =3 — (1,3,2) |0 6 =3 —
(1,2,3) |80 3 — (1,3,2) |8 5 3 +
(1,2,3) | 8 0 —2 — (1,3,2) |8 6 3 +
(1,2,3) |8 6 3 + (1,3,2) |8 6 4 +
(1,2,3) |8 6 + (1,3,2) | 8 6 4 +
ext. order | y; yo y3 | in core? ext. order | y; yo y3 | in core?
213 |00 0] - 231 |300 ] -
(2,1,3) {00 -3 - (2,3,1) |50 0 -
213 |80 3| - 231 |10-2] -
(2,1,3) |8 0 -2 — (2,3,1) |3 0 =2 —
(2,1,3) |06 3 — (2,3,1) |6 6 3 +
(2,1,3) |0 6 4 — (2,3,1) |8 6 3 +
(2,1,3) |86 3 + (2,3,1) |76 4 +
(2,1,3) |8 6 4 + (2,3,1) |8 6 4 +
ext. order | y; y2 y3 | in core? ext. order | y; y2 y3 | in core?
312 [320] + 321 |320] +
3,1,2) |3 30 + (3,2,1) | 520 +
3,1,2) |5 20 + (3,2,1) |3 30 +
3,1,2) |5 30 + 3,2,1) |5 30 +
(3,1,2) |7 6 4 + (3,2,1) |76 4 +
(3,1,2) |76 4 + (3,2,1) | 8 6 4 +
(3,1,2) | 8 6 4 + (3,2,1) |76 4 +
3.1,2) |864| + 3.27) | 864 +
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Notice that since workers 1 and 2 are optimally matched to the same firm, thus the
difference between their core payoffs is not constrained, whenever they occupy consec-
utive positions in an extended order the associated max-min vector is the same. Based
on this observation, the full enumeration process can be somewhat shortened.
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