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Abstract

This paper analyzes the extent to which well-known results on the relation-
ship between the bargaining set, the core, and the kernel in one-to-one assignment
games generalize to many-to-one assignment markets, and by extension, many-to-
many markets. Using a minimal counterexample, we show that the bargaining set
does not necessarily coincide with the core and that the kernel may not be con-
tained within the core. Notably, to the best of our knowledge, among cooperative
games arising from network optimization problems in the literature, the many-to-
one assignment market is the first to exhibit such a failure in these relationships.
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1 Introduction

We consider a two-sided market, one side formed by a set of firms and the other by
a set of workers. Firms want to hire many workers, up to each firm’s capacity, but
each worker can work for only one firm. Each firm places a non-negative value on each
worker, and workers may have a reservation value. Since we assume that firms value
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groups of workers additively, the main data of the market is the value that each firm-
worker pair can attain when matched. This value can be transferred by means of the
salary the firm pays to each worker it hires. A matching is an assignment of a group of
workers to each firm, and a coalitional game is introduced where the worth of a coalition
is the highest value that can be obtained by matching firms and workers in the coalition
without violating the capacity of each firm. A natural solution concept in this setting
is the core, which is the set of allocations of the total value of the market that cannot
be improved upon by any coalition.

The many-to-one assignment market is an extension of the well-known one-to-one
assignment game introduced by Shapley and Shubik (1971) to study two-sided markets
where there are indivisible goods which are traded between sellers and buyers in exchange
for money. In their model, each buyer wants at most one unit of good, and each seller
owns exactly one indivisible good.1

One-to-one assignment markets can be extended to many-to-many assignment mar-
kets in two different ways. In the first one, known as the multiple-partners assignment
game (Sotomayor, 1992), each agent can establish several partnerships, as many as its
capacity allows, but each of them with a different partner. In the second extension,
sometimes known as the transportation game (Sánchez-Soriano et al., 2001), an agent
may establish more than one partnership with a same agent of the opposite side. In both
cases the core is proved to be non-empty. Notice that our many-to-one situation lies in
the intersection of these two extensions since the unitary capacity of agents on one side
rules out the possibility of more than one partnership between a same firm-worker pair.
It is known that most of the existing results for one-to-one assignment markets cannot
be extended to the many-to-many assignment markets (Sotomayor, 2002; Sotomayor,
2007). Discrete many-to-one assignment markets were previously studied by Crawford
and Knoer (1981) but with a different notion of core, and a generalized model where
the value of matching a group of workers to a firm may be non-additive can be found
in Kelso and Crawford (1982).

In this note we focus on the core of the many-to-one assignment market games and
consider other related set-solution concepts different from the core, and defined for the
general class of coalitional games, to show that more dissimilarities appear with respect
to the one-to-one case. One of these solution concepts, that contains the core, is the
classical bargaining set of Davis and Maschler (1967), formed by those imputations that
have no justified objection, since all objections can be countered. For games with non-
empty imputation set, the bargaining set is non-empty since it contains a singled-valued
solution known as the nucleolus, even if the core is empty. The second set-solution
notion we will consider is the kernel (Davis and Maschler, 1965) that makes a selection
of the imputations of the bargaining set by imposing some balancedness in strength for
each pair of agents.

For the one-to-one assignment game, first Driessen (1998) proved that the kernel
is included in the core, and secondly Solymosi (1999) proved that the bargaining set
coincides with the core.2 We show that, differently from the one-to-one assignment

1(Núñez and Rafels, 2015) is a survey on assignment markets and games.
2Intermediate results were obtained by Granot (1994, 2010) who introduced the reactive bargaining
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market, the kernel may not be a subset of the core for many-to-one assignment markets.
Therefore, the core and the classical bargaining set do not coincide (Example 2 and
Proposition 3). The loss of this coincidence means that the core is somehow a less
robust solution in these markets, since those allocations outside the core that do not
have a justified objection could be taken into account when looking for a distribution
of the worth of the grand coalition. Maschler (1976) points out the advantage of the
bargaining set over the core in some market games. What we highlight in this note is
that this is also the case in some many-to-one assignment markets.

For any coalitional game with a non-empty imputation set, the intersection of the
kernel and the core is always non-empty, since it contains a well-known single-valued
solution that is the nucleolus. We show that the simplified expression for this intersection
that was given in Granot and Granot (1992) for the one-to-one assignment game can
now be extended to the many-to-one case.

The paper is organized as follows. In Section 2, some preliminaries on transferable
utility games are provided. Section 3 introduces many-to-one assignment markets and
games. In Section 4, we conclude with our results on the core, the kernel, and the
bargaining set for these many-to-one markets.

2 Notations and definitions

A transferable utility (TU) cooperative game (N, v) is a pair where N is a non-empty,
finite set of players (or agents) and v : 2N → R is a coalitional function satisfying
v(∅) = 0. The number v(S) is regarded as the worth of the coalition S ⊆ N . We identify
the game with its coalitional function since the player set N is fixed throughout the
paper. The game (N, v) is called superadditive if S∩T = ∅ implies v(S∪T ) ≥ v(S)+v(T )
for every two coalitions S, T ⊆ N . Coalition R ⊆ N is called inessential in game v if
it has a nontrivial partition R = S ∪ T with S, T ̸= ∅ and S ∩ T = ∅ such that
v(R) ≤ v(S) + v(T ). Notice that in a superadditive game the weak majorization can
only happen as equality. Those non-empty coalitions which are not inessential are
called essential. Note that the single-player coalitions are essential in any game, and
any inessential coalitional value can be weakly majorized by the value of a partition
composed only of essential coalitions.

Given a game (N, v), a payoff allocation x ∈ RN represents the payoffs to the players.
The total payoff to coalition S ⊆ N is denoted by x(S) =

∑
i∈S xi, in particular x(∅) = 0,

for throughout the paper we keep the convention that summing over the empty-set gives
zero. In a game v, we say the payoff allocation x is efficient, if x(N) = v(N). The set of
imputations, denoted by I(v), consists of all efficient payoff vectors that are individually
rational, that is, xi ≥ v({i}) for all i ∈ N . The core C(v) is the set of imputations
that are coalitionally rational, that is, x(S) ≥ v(S) for all S ⊆ N . Observe that all the
coalitional rationality conditions for inessential coalitions are implied by the inequalities
related to essential coalitions, hence can be ignored: the core and the essential-core are
always the same.

set, a subset of the classical bargaining set, that always contains both the core and the kernel, and
proved the coincidence of the core with the reactive bargaining set in one-to-one assignment games.
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When a payoff allocation x is not coalitionally rational for a game (N, v), that is∑
i∈S xi < v(S) for some S ⊆ N , we say that coalition S blocks x, since it can propose

a payoff vector y ∈ RN such that y(S) = v(S) and yk > xk for all k ∈ S. We can
also say that (S, y) is an objection of any agent i ∈ S against any j ̸∈ S at imputation
x. The core excludes all those allocations that can be objected. Instead, the (classical)
bargaining set, introduced by Davis and Maschler (1967) for games with a non-empty set
of imputations, only excludes allocations with a justified objection, that is, an objection
that cannot be countered. A counter-objection to an objection (S, y) of i against j at
x ∈ I(v), is a pair (T, z) where j ∈ T ⊆ N , i ̸∈ T , y(T ) = v(T ) and zk ≥ yk for all
k ∈ T ∩ S while zk ≥ xk for all k ∈ T \ S.

The core of a coalitional game is always included in its bargaining set, since at core
allocations no objection can arise. Hence, the bargaining set often contains infinitely
many payoff vectors. We consider another set-wise solution concept known as the kernel.
The kernel, introduced by Davis and Maschler (1965), is a non-empty subset of the
classical bargaining set of Davis and Maschler (1967) for all games with a non-empty set
of imputations. Whenever the core is non-empty, the intersection between the kernel
and the core is also non-empty since it contains the nucleolus.

For superadditive games, the kernel is defined as

K(v) = {z ∈ I(v) | sij(z) = sji(z), for all i, j ∈ N},

where sij(z) = maxi∈S,j ̸∈S{v(S)−z(S)} is the maximum excess at imputation z of coali-
tions containing i and not containing j. An imputation in the kernel is pairwise balanced
in the sense that the maximum excess that agent i can attain with no cooperation of j
equals the maximum excess that j can attain without the cooperation of i.

3 The many-to-one assignment market and game

We consider a market where there are two types of agents: a finite set of firms F =
{f1, f2, . . . , fm} and a finite set of workers W = {w1, w2, . . . , wn} where the number of
firms m can be different from the number of workers n. Let N = F ∪ W be the set
of all agents. We sometimes denote a generic firm and a generic worker by i and j,
respectively. The net income generated when firm i ∈ F hires worker j ∈ W is denoted
by aij and it is shared by means of the salary yj that the firm pays to the worker. The
valuation matrix denoted by A = (aij)(i,j)∈F×W represents the pairwise income for each
possible firm-worker pair. Each firm i ∈ F would like to hire up to ri ≥ 0 workers and
each worker j ∈ W can work for at most one firm. Then, a many-to-one assignment
market is the quadruple γ = (F,W,A, r).

A matching µ for the market γ = (F,W,A, r) is a set of F ×W pairs such that each
firm i ∈ F appears in at most ri pairs and each worker j ∈ W in at most one pair. We
denote by M(F,W, r) the set of matchings for market γ. A matching µ ∈ M(F,W, r)
is optimal for γ if

∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′
aij holds for any other matching µ′ ∈ M(F,W, r).

We denote by MA(F,W, r) the set of optimal matchings for the market γ. Given
a matching µ ∈ M(F,W, r), the set of workers matched to firm i ∈ F under µ is
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µ(i) = {j ∈ W | (i, j) ∈ µ}. It may be convenient to denote the set of workers
unmatched under µ by µ(f0), that is µ(f0) = W \

⋃
i∈F µ(i). Observe that i ̸= k ∈ F

implies µ(i)∩µ(k) = ∅, hence µ(f0)∪
⋃

i∈F µ(i) = W is a partition of the set of workers.
Given a many-to-one assignment market γ = (F,W,A, r), we define the income

maximization linear programming problem by

V(F,W ) = max
∑
i∈F

∑
j∈W

aijxij (1)

s. t.
∑
j∈W

xij ≤ ri, i ∈ F∑
i∈F

xij ≤ 1, j ∈ W

xij ≥ 0, (i, j) ∈ F ×W.

It is well known that any variable in any basic feasible solution of this LP problem with
integer right hand sides is integral, hence, by the worker capacity inequalities, 0 or 1.
Consequently, the relation (i, j) ∈ µ ↔ xij = 1 defines a bijection between the set of
basic feasible solutions to this LP problem and the set of matchings µ ∈ M(F,W, r).
Henceforth, the optimum value of (1) gives the maximum of the sum of values of the
matched pairs while respecting the capacities of firms.

Given market γ = (F,W,A, r), we also apply the above notation and terminology for
any submarket γ(S,T ) = (S, T,A(S,T ), rS) with S ⊆ F , T ⊆ W , and accordingly restricted
valuation matrix A(S,T ) and capacity vector rS.

Now, let us associate a coalitional game with transferable utility (TU-game) with
this type of two-sided matching markets. Given a many-to-one assignment market
γ = (F,W,A, r), its associated many-to-one assignment game is the pair (N, vγ) where
N = F ∪ W is the set of players and the coalitional function is given by vγ(S ∪ T ) =

max
µ∈M(S,T,rS)

∑
(i,j)∈µ

aij for all S ⊆ F and T ⊆ W .3 For brevity, we denote coalition S ∪ T

with S ⊆ F and T ⊆ W by (S, T ), in particular, one-sided coalitions by (∅, T ) and
(S, ∅). As the union of matchings for disjoint coalitions is a matching for the union
of the coalitions, i.e. µ ∈ M(S, T, rS) and µ′ ∈ M(S ′, T ′, rS′) with S ∩ S ′ = ∅ and
T ∩ T ′ = ∅ implies µ ∪ µ′ ∈ M(S ∪ S ′, T ∪ T ′, rS∪S′), it easily follows that many-to-
one assignment games are superadditive. On the other hand, if ν ∈ M(S, T, rS) is an
optimal matching for coalition (S, T ), that is vγ(S, T ) =

∑
(i,j)∈ν

aij =
∑
i∈S

∑
j∈ν(i)

aij, then

it follows from vγ(i, ν(i)) =
∑

j∈ν(i)
aij for all i ∈ S that vγ(S, T ) =

∑
i∈S

vγ(i, ν(i)). Since

(S, T ) = (∅, ν(f0)) ∪
⋃
i∈S

(i, ν(i)) where ν(f0) denotes the unmatched workers in T under

ν, and vγ(ν(f0)) = 0 =
∑

j∈ν(f0)
vγ(j), we get the following observations.

Proposition 1. In many-to-one assignment games, the following types of coalitions are
inessential:

3When no confusion arises, for a given market γ, we denote its corresponding coalitional function
by v instead of vγ .
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• any coalition containing at least two firms,

• any single-firm coalition containing more workers than the capacity of the firm,

• any one-sided coalition containing at least two players.

Consequently, in an (m + n)-player many-to-one assignment game, among the 2m+n −
1 non-empty coalitions, at most

∑m
i=1

∑ri
t=1

(
n
t

)
≤ 2n − 2 coalitions can be essential.

However, this exponential upper bound is sharp (if all aij pairwise income values are
positive, m = 2, and n = r1 + r2).

As in any coalitional game, the main concern is how to share the worth of the
grand coalition (the total income) among all agents. To do so, we focus on the solution
concept known as the core. Different than one-to-one assignment games, where the only
essential coalitions are the individual ones and the mixed-pairs, here (see Proposition
1), instability may arise from a group of workers and a firm that can be better off by
recontracting among themselves instead of their prescribed agreements.

4 Core, kernel and bargaining set

In order to investigate the relationship between the core of many-to-one assignment
markets and other set-valued solution concepts, we need to analyze closely the structure
of the core of these games. Given a many-to-one assignment market γ = (F,W,A, r)
and µ ∈ MA(F,W, r) an optimal matching, (x, y) ∈ RF

+ × RW
+ is in the core C(vγ) of

the associated game if and only if for every firm i ∈ F ,

xi +
∑
j∈T

yj ≥
∑
j∈T

aij = vγ(i, T ) for all T ⊆ W with |T | ≤ ri(with equality for T = µ(i))

(2)
and the payoff to unassigned firms or workers is zero.

The above description of the core of a many-to-one assignment game is based on
Proposition 1 and the general equivalence of the core and the essential-core.

Other relevant results for the one-to-one assignment game are the coincidence be-
tween the core and the bargaining set (Solymosi, 1999) and the inclusion of the kernel
in the core (Driessen, 1998), (Granot, 1994, 2010). The coincidence between the core
and the bargaining set, when it holds, is a robustness property of the core since it guar-
antees that any allocation outside the core has a justified objection (an objection that
has no counter-objection) and hence can be dismissed when looking for a cooperative
agreement on the distribution of the worth of the grand coalition.

In this section, we focus on the relationship between the core and the bargaining
set for many-to-one assignment markets. Next example shows that the inclusion of the
kernel in the core, and also the coincidence of the core with the bargaining set, do
not carry over to the many-to-one assignment game. We remark that this five-player
counter-example is of the smallest size possible, since for any balanced game with at
most four players the bargaining set and the core coincide (Solymosi, 2002), hence the
kernel is included in the core (Peleg, 1966).
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Example 2. Consider a many-to-one assignment market γ = (F,W,A, r) where F =
{f1, f2} is the set of firms, W = {w1, w2, w3} is the set of workers, and the capacities of
the firms are r = (2, 2). The per-unit pairwise valuation matrix is the following:

A =

(w1 w2 w3

f1 1 1 1
f2 1 1 1

)
.

The core contains a unique point, C(vγ) = {(0, 0; 1, 1, 1)}. One can easily check that
the imputation (x, y) = (1, 1; 1/3, 1/3, 1/3) is not a core allocation, but it lies in the
kernel since for any pair of agents the maximum surplus is the same. Let us show that
this is indeed the case. The characteristic function of the corresponding many-to-one
assignment game (F ∪W, vγ) and the excesses at imputation (x, y) = (1, 1; 1/3, 1/3, 1/3),
that is, e(S, (x, y)), are represented in the next table:

vγ(S) x1 x2 y1 y2 y3 e(S, (x, y))
0 1 . . . . −1
0 . 1 . . . −1
0 . . 1 . . −1/3
0 . . . 1 . −1/3
0 . . . . 1 −1/3
0 1 1 . . . −2
1 1 . 1 . . −1/3
1 1 . . 1 . −1/3
1 1 . . . 1 −1/3
1 . 1 1 . . −1/3
1 . 1 . 1 . −1/3
1 . 1 . . 1 −1/3
0 . . 1 1 . −2/3
0 . . 1 . 1 −2/3
0 . . . 1 1 −2/3

vγ(S) x1 x2 y1 y2 y3 e(S, (x, y))
1 1 1 1 . . −4/3
1 1 1 . 1 . −4/3
1 1 1 . . 1 −4/3
2 1 . 1 1 . 1/3
2 1 . 1 . 1 1/3
2 1 . . 1 1 1/3
2 . 1 1 1 . 1/3
2 . 1 1 . 1 1/3
2 . 1 . 1 1 1/3
0 . . 1 1 1 −1
2 1 1 1 1 . −2/3
2 1 1 1 . 1 −2/3
2 1 1 . 1 1 −2/3
2 1 . 1 1 1 0
2 . 1 1 1 1 0
3 1 1 1 1 1 0

Next, we calculate the maximum excess at the point (x, y) = (1, 1; 1/3, 1/3, 1/3) for
all possible pairs of agents. Since firms (workers) have the same payoff, x1 = x2 = 1
(y1 = y2 = y3 = 1/3), it is sufficient to check the maximum excess for the following
pairs:

• If i = f1 and j = f2, then max
f1∈S
f2 /∈S

e(S, (x, y)) = 1/3 = max
f2∈S
f1 /∈S

e(S, (x, y)).

• If i = w1 and j = w2, then max
w1∈S
w2 /∈S

e(S, (x, y)) = 1/3 = max
w2∈S
w1 /∈S

e(S, (x, y)).

• If i = f1 and j = w1, then max
f1∈S
w1 /∈S

e(S, (x, y)) = 1/3 = max
w1∈S
f1 /∈S

e(S, (x, y)).
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Then, for any pair of agents, the maximum excess over coalitions containing one of
them but not the other is equal at the point (x, y) = (1, 1; 1/3, 1/3, 1/3). Hence, the
imputation (x, y) = (1, 1; 1/3, 1/3, 1/3) lies in the kernel. Since it is not a core allocation,
it implies that the kernel is not a subset of the core.

In fact, making use of the facts that (i) the two firms, as well as any two workers
are symmetric players4 in this game, and (ii) symmetric players get the same payoff at
any point of the kernel, it can be easily proved that the kernel of this game is the set
{(α, α; 1− 2α

3
, 1− 2α

3
, 1− 2α

3
) | 0 ≤ α ≤ 3/2}. It is the line segment with the core element

(0, 0; 1, 1, 1) as one extreme point, and the imputation (3/2, 3/2; 0, 0, 0) where the firms
take all the value as the other extreme point. Notice that the kernel allows for more
fair distributions of the value of the market between firms and workers than the one
proposed by the core.5

Since the kernel is a subset of the classical bargaining set, all these points (α, α; 1−
2α
3
, 1− 2α

3
, 1− 2α

3
) that are in the kernel are also in the bargaining set. This implies that

the core and the classical bargaining set do not coincide.

Proposition 3. In the many-to-one assignment game,

(i) The kernel need not be a subset of the core.

(ii) The classical bargaining set need not coincide with the core.

The above proposition implies that the coincidence between the classical bargaining
set and the core cannot be carried over from the one-to-one case to the many-to-one case
and to the many-to-many case. Our result showing that the coincidence between the
core and the classical bargaining set is not satisfied is a remarkable exception among sev-
eral classes of related combinatorial optimization games. Solymosi et al. (2003) showed
the coincidence result for permutation games. Solymosi (2008) proved (among other
variants) that the classical bargaining set coincides with the core for several classes,
including one-to-one assignment games, tree-restricted superadditive games, and simple
network games. The same coincidence was obtained for monotonic veto games by Soly-
mosi (1999), and extended to any non-negative veto game by Bahel (2016). Recently,
Bahel (2021) obtained the coincidence result for the so-called quasi-hyperadditive games,
which contain one-to-one assignment games. Atay and Solymosi (2018) extended the co-
incidence result from one-to-one assignment games to a class of multi-sided assignment
games known as the supplier-firm-buyer games.

Although we have learned that the kernel of the many-to-one assignment game may
have imputations outside the core, we know that, whenever the core is non-empty, like
in the case of the many-to-one assignment games, the kernel always contains some core
elements. The reason is that, for games with a non-empty core, it is well-known that
the nucleolus is always in the intersection of the kernel and the core.

4Two players i and j are symmetric in a coalitional game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all
S ⊆ N \ {i, j}.

5For example, at the kernel-allocation (3/4, 3/4; 1/2, 1/2, 1/2) the shares of the two sides are equal.
In this example, the Shapley value (Shapley, 1953) is (78/120, 78/120; 68/120, 68/120, 68/120) and it is
also in the kernel of the game.
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As in the one-to-one assignment game (Granot and Granot, 1992), some simplifica-
tions can be done to obtain those core allocations that also belong to the kernel. First,
only essential coalitions are to be taken into account, and secondly, not all pairs of
agents need to be considered.

We have defined a matching as a set of firm-worker pairs that do not violate the
capacities of firms and workers, but we can also understand it as a partition of F ∪W
in essential coalitions. If (i, j1), (i, j2), . . . , (i, jk) are pairs in a matching µ, then the
coalition T = {i, j1, j2, . . . , jk} is one element of the partition of F ∪W induced by µ.
This fact will simplify notations in the next result.

Proposition 4. Let γ = (F,W,A, r) be a many-to-one assignment game. Then,

K(vγ) ∩ C(vγ) = {z ∈ C(vγ) | sij(z) = sji(z) for all {i, j} ⊆ T ∈ Φ(A)},

where Φ(A) is the set of essential coalitions that belong to all optimal matchings.

Proof. Let z ∈ C(vγ), S an arbitrary coalition of F ∪W and µS = {T1, T2, . . . , Tr} an
optimal matching for coalition S. Then,

e(S, z) = vγ(S)− z(S) =
∑
T∈µS

(vγ(T )− z(T )) ≤ vγ(Tk)− z(Tk), for all Tk ∈ µS,

where the inequality follows from the fact that excesses at a core allocation are always
non-positive. Then, the maximum excess at z over coalitions containing agent i and not
containing agent j is always attained at an essential coalition. This implies that only
essential coalitions are to be considered to find those core elements that belong to the
kernel.

Moreover, if we take two firms i1, i2 ∈ F , then

si1i2(z) = e(S, z) = 0 = e(T, z) = si2i1(z),

where S = {i1} ∪ µ(i1) and T = {i2} ∪ µ(i2), for any optimal matching µ.
Similarly, if we take two workers that are not assigned to the same firm in an optimal

matching µ, that is, (i1, j1) ∈ µ and (i2, j2) ∈ µ, then

sj1j2(z) = e(S, z) = 0 = e(T, z) = sj2j1(z),

where S = {i1} ∪ µ(i1) and T = {i2} ∪ µ(i2).
Finally, if we take a firm i1 and a worker j2 that are not matched in some optimal

matching µ, that is, there is µ ∈ MA(F,W, r) and i2 ∈ F \ {i1} such that (i2, j2) ∈ µ,
then also si1j2(z) = e(S, z) = 0 = e(T, z) = sj2i1(z), where S = {i1} ∪ µ(i1) and
T = {i2} ∪ µ(i2).

To sum up, only firm-worker pairs that are matched in all optimal matchings and
pairs of workers that are matched to the same firm in all optimal matchings are to be
considered.

As a consequence, if a market (F,W,A, r) is such that there is no essential coalition
that belongs to all optimal matchings, then all core elements are in the kernel. This is
precisely the case of Example 2.
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