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Abstract

This paper studies many-to-one assignment markets, or matching markets with
wages. Although it is well-known that the core of this model is non-empty, the
structure of the core has not been fully investigated. To the known dissimilarities
with the one-to-one assignment game, we add that the bargaining set does not
coincide with the core and the kernel may not be included in the core. Besides,
not all extreme core allocations can be obtained by means of a lexicographic
maximization or a lexicographic minimization procedure, as it is the case in the
one-to-one assignment game.

The maximum and minimum competitive salaries are characterized in two
ways: axiomatically and by means of easily verifiable properties of an associated
directed graph. Regarding the remaining extreme core allocations of the many-to-
one assignment game, we propose a lexicographic procedure that, for each order on
the set of workers, sequentially maximizes or minimizes each worker’s competitive
salary. This procedure provides all extreme vectors of competitive salaries, that
is all extreme core allocations.
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cial support by the Spanish Ministerio de Ciencia e Innovación through grant PID2020-113110GB-
100/AEI/10.130339/501100011033, by the Generalitat de Catalunya through grant 2021-SGR-00306.
T. Solymosi gratefully acknowledges financial support from the Hungarian National Research, Devel-
opment and Innovation Office via the grant NKFI K-146649. This work supported by National Science
Foundation under Grant No DMS-1928930 while Ata Atay was in residence at the Mathematical Science
Research Institute in Berkeley, California, during the Fall 2023 semester.
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1 Introduction

We consider a two-sided market, one side formed by a set of firms and the other by a set
of workers. Firms want to hire many workers, up to each firm’s capacity, but each worker
can work for only one firm. Each firm places a non-negative value on each worker, and
workers may have a reservation value. Since we assume firms value groups of workers
additively, the main data of the market is the value that each firm-worker pair can attain
when matched. This value can be transferred by means of the salary the firm pays to
each worker it hires. A matching is an assignment of a group of workers to each firm
and a coalitional game is introduced where the worth of a coalition is the highest value
that can be obtained by matching firms and workers in the coalition without violating
the capacity of each firm. A natural solution concept in this setting is the core, which
is the set of allocations of the total value of the market that cannot be improved upon
by any coalition.

The many-to-one assignment market is an extension of the well-known one-to-one
assignment game introduced by Shapley and Shubik (1971) to study two-sided markets
where there are indivisible goods which are traded between sellers and buyers in exchange
for money. In their model, each buyer wants at most one unit of good, and each seller
owns exactly one indivisible good.1 In the setting of two-sided assignment markets
where each agent has a unit capacity, Shapley and Shubik (1971) show that the core is
always non-empty and each core element is supported by competitive prices (or salaries).
Furthermore, the core has a complete lattice structure. Hence, in our job-market setting,
there exists a unique firm-optimal (worker-optimal) core allocation such that the payoff
of every firm (worker) is at least as good as under any other core allocation. Moreover,
there is an opposition of interest between the two sides of the market when comparing
two core allocations: all agents in one side agree on which of the two they prefer. As
a consequence, the best core allocation for one side is the worst for the other side of
the market. Demange (1982) and Leonard (1983) prove that in the firm-optimal core
allocation each firm attains its marginal payoff and in the worker-optimal core allocation
each worker attains her marginal payoff. As a consequence of that, the optimal stable
rules, that given an assignment market select the core allocation that is optimal for one
side of the market, cannot be manipulated by the agents of that side.

One-to-one assignment market games can be extended to many-to-many assignment
markets in two different ways. The first one is known as the multiple-partners assignment
game (Sotomayor, 1992) and each agent can establish several partnerships, as many as
its capacity allows, but each of them with a different partner. In the second extension,
sometimes known as the transportation game (Sánchez-Soriano et al., 2001), an agent
may establish more than one partnership with a same agent of the opposite side. In both
cases the core is proved to be non-empty. Notice that our many-to-one situation lies in
the intersection of these two extensions since the unitary capacity of agents on one side
rules out the possibility of more than one partnership between a same firm-worker pair.

Most of the existing results for one-to-one assignment markets cannot be extended
to the many-to-many assignment markets (Sotomayor, 2002; Sotomayor, 2007): some

1(Núñez and Rafels, 2015) is a survey on assignment markets and games.
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core allocations may not be supported by competitive prices and the core may not
be a lattice. Nevertheless, for many-to-one assignment markets the core has a lattice
structure based on the partial order on the set of payoffs to the side of the market where
agents have unitary capacity. This guarantees in that case the existence of an optimal
core allocation for each side of the market, However, the firm-optimal stable rule may
no longer be non-manipulable by the firms.

We can consider two types of many-to-one assignment markets, depending on which
side of the market has unitary capacity. This does not affect the core, but makes a big
difference when competitive equilibria are considered. If the unitary capacity is on the
side that posts prices, that is sellers or workers, then we are in the many-to-one model of
Sotomayor (2002) and the core coincides with the set of competitive equilibrium payoff
vectors. When the unitary capacity is on the agents that report a demand given some
prices, that is, buyers or firms, then we are in the many-to-one model of Kaneko (1976),
and the core may strictly contain the set of competitive equilibrium payoff vectors (CE
payoff vectors) that now coincides with the set of solutions of the dual linear program
that finds an optimal matching. In this paper we focus on the first case, the job market
with unitary capacity workers of Sotomayor (2002), and only in the last section we show
that, after some adjustments, parallel results can be obtained for Kaneko’s buyer-seller
market, where buyers have unitary capacity.

In the first part of the paper, we focus on the core of the many-to-one assignment
market games and consider other related set-solution concepts different from the core
to show that more dissimilarities appear with respect to the one-to-one case. We prove
that, differently from the one-to-one assignment market, the kernel may not be a subset
of the core for many-to-one assignment markets. Therefore, the core and the classical
bargaining set do not coincide (Example 4 and Corollary 5). The loss of this coincidence
means that the core is somehow a less robust solution in these markets, since those
allocations that do not have a justified objection could be taken into account when
looking for a distribution of the worth of the grand coalition.

However, if we want the allocation of the total worth of the market to be supported
by competitive prices (or salaries in our case), then we must restrict our attention
again to the set of core payoffs, that coincides with the set of competitive equilibrium
payoffs. Generically this set contains infinitely many payoff vectors, although little is
known about its dimension and geometric structure. Applications such as some auction
markets, usually consider only the maximum competitive prices (salaries) rule and the
minimum competitive prices (salaries) rule. We begin by providing axiomatic charac-
terizations of these rules on the domain of many-to-one assignment markets, based on
those for the optimal stable rules of the general (many-to-many) multiple-partners as-
signment market in (Domènech and Núñez, 2022). This is complemented with another
characterization based on easily verifiable properties of an associated directed graph,
called the tight digraph (more details below).

Beyond these two extreme core allocations or salary vectors, there are usually many
other, and they give an idea of the extension of the core and hence the possibilities
of cooperative agreements. To this end, we aim to study the extreme core allocations.
First, we observe that, unlike the one-to-one case, in an extreme core allocation it

3



may be the case that no agent achieves his/her marginal contribution and moreover
extreme core allocations are not obtained by a lexicographic minimization procedure
or by lexicographic maximization procedure as it is the case for one-to-one assignment
markets. See (Izquierdo et al., 2007) and (Núñez and Solymosi, 2017).

Based on the projection of the core to the space of workers’ payoffs (salaries), and
given a competitive salary vector, we define a digraph, the tight digraph, where the set
of nodes is the set of workers augmented by a node representing their outside option
and the directed arcs are determined by the constraints of the set of competitive salaries
that are tight at that given vector. Then, we show that a competitive salary vector is
an extreme point if and only if the base-graph of the tight digraph (where the direction
of the arcs are ignored) is connected (Theorem 11 (A)). It implies that at an extreme
competitive salary vector there is a worker with zero salary or a worker with a salary
that equals the total surplus it creates with a firm under an optimal matching. We also
provide a necessary and sufficient condition for each side-optimal allocation in terms of
the tight digraph (Theorem 11 (B)).

After that, for each order on the set of workers, we define a payoff vector where each
worker sequentially maximizes or minimizes its competitive salary, preserving what has
been allocated to its predecessors. Making use of the tight digraph, we show that this
set of max-min vectors includes all the extreme competitive salary vectors of the many-
to-one assignment market. This gives a procedure for the computation of these extreme
points and consequently allows for a representation of the entire core.

Besides the one-to-one assignment game, the literature contains results regarding the
set of extreme core allocations for other related combinatorial models, such as ordinal
two-sided markets (Bäıou and Balinski, 2000, 2002) and minimum cost spanning tree
games (Trudeau and Vidal-Puga, 2017).

Before concluding, we move to the other many-to-one assignment market, let us say a
buyer-seller market where buyers have unitary demand. Our results on the core trivially
apply to this case, simply focusing on the projection of the core to the buyers’ payoffs.
We also provide a description of the competitive equilibrium payoff vectors that allows
for a characterization of their extreme points by means of an extended tight graph.

The paper is organized as follows. In Section 2, some preliminaries on transferable
utility games are provided. Section 3 introduces many-to-one assignment markets and
games. In Section 4, we introduce our results on the core, the kernel, and the bargaining
set. We provide an axiomatic characterization of the maximum and minimum compet-
itive salary vectors in Section 5. Another characterization, in terms of properties of
associated tight digraphs, is given in Section 6 as a special case for the characterization
of any extreme competitive salary vector. Based on this, we describe a lexicographic
procedure to obtain all extreme vectors of competitive salaries, or extreme core alloca-
tions, in Section 7. We consider a special subclass of many-to-one assignment markets
and provide some positive results in Section 8. Section 9 extends our previous results to
the reverse many-to-one model in (Kaneko, 1976), where buyers have unitary demand,
and Section 10 concludes.
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2 Notations and definitions

A transferable utility (TU) cooperative game (N, v) is a pair where N is a non-empty,
finite set of players (or agents) and v : 2N → R is a coalitional function satisfying
v(∅) = 0. The number v(S) is regarded as the worth of the coalition S ⊆ N . We identify
the game with its coalitional function since the player set N is fixed throughout the
paper. The game (N, v) is called superadditive if S∩T = ∅ implies v(S∪T ) ≥ v(S)+v(T )
for every two coalitions S, T ⊆ N . Coalition R ⊆ N is called inessential in game v if
it has a nontrivial partition R = S ∪ T with S, T 6= ∅ and S ∩ T = ∅ such that
v(R) ≤ v(S) + v(T ). Notice that in a superadditive game the weak majorization can
only happen as equality. Those non-empty coalitions which are not inessential are
called essential. Note that the single-player coalitions are essential in any game, and
any inessential coalitional value can be weakly majorized by the value of a partition
composed only of essential coalitions.

Given a game (N, v), a payoff allocation x ∈ R
N represents the payoffs to the players.

The total payoff to coalition S ⊆ N is denoted by x(S) =
∑

i∈S xi, in particular x(∅) = 0,
for throughout the paper we keep the convention that summing over the empty-set gives
zero. In a game v, we say the payoff allocation x is efficient, if x(N) = v(N). The set of
imputations, denoted by I(v), consists of all efficient payoff vectors that are individually
rational, that is, xi ≥ v({i}) for all i ∈ N . The core C(v) is the set of imputations
that are coalitionally rational, that is, x(S) ≥ v(S) for all S ⊆ N . Observe that all the
coalitional rationality conditions for inessential coalitions are implied by the inequalities
related to essential coalitions, hence can be ignored: the core and the essential-core are
always the same.

Given a game (N, v), the game (N, v∗) defined by v∗(S) = v(N) − v(N \ S) for all
S ⊆ N is called the dual game. Notice that v∗(∅) = 0 and v∗(N) = v(N) for any game
(N, v). It is easily seen that the core of any coalitional game coincides with the anticore
of its dual game, that is,

C(v) = C∗(v∗) := {x ∈ R
N : x(N) = v∗(N), x(S) ≤ v∗(S) ∀S ⊆ N}. (1)

It follows that if i ∈ N is a null player in game v (i.e. v(S ∪ {i}) = v(S) for all S ⊆ N ,
in particular, v({i}) = 0), its payoff is xi = 0 in any core allocation x ∈ C(v). Indeed,
then v(N) = v(N \ {i}) + v({i}) ≤ x(N \ {i}) + xi = x(N) = v(N), implying both
x(N \ {i}) = v(N \ {i}) and xi = v(i) = 0.

An order on the set of players N is a bijection σ : {1, 2, . . . , n} → N , where for all
i ∈ {1, 2, . . . , n}, σi = σ(i) is the player that occupies position i. For a given order σ,
P σ
i = {j ∈ N | σ−1(j) < σ−1(i)} denotes the set of predecessors of agent i ∈ N . For

each order σ on the player set N of game (N, v), a marginal payoff vector mσ,v is defined
by mσ,v

σi
= v(P σ

σi
∪ {σi})− v(P σ

σi
) for all i ∈ N . Whenever a marginal payoff vector is in

the core, then it is an extreme core allocation.
Hamers et al. (2002) showed that each extreme core allocation of an assignment game

is a marginal payoff vector. Nevertheless, the opposite implication only holds in convex
assignment games.

Núñez and Solymosi (2017) studied other lexicographic allocation procedures for
coalitional games looking for a characterization and a computation procedure of their
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extreme core points. Given a game (N, v) and over the set Ra∗(N, v) = {x ∈ R
N :

x(S) ≤ v(N) − v(N \ S) for all S ⊆ N} of dual coalitionally rational payoff vectors,
the following lexicographic maximization procedure is proposed: for any order σ of the
players, the σ-lemaral vector rσ,v ∈ R

N is defined by, for all i ∈ {1, 2, . . . , n},

rσ,vσi
= max

{
xσi

: x ∈ Ra∗(N, v), xσl
= rσ,vσl

∀l ∈ {1, . . . , i− 1}
}
, (2)

which trivially leads to

rσ,vσi
= min

{
v∗(Q ∪ {σi})− rσ,v(Q) : Q ⊆ P σ

σi

}
. (3)

Notice that in the σ-lemaral vector, the first player in the order maximizes its payoff
on the set Ra∗, the second player maximizes its payoff over those dual coalitional ra-
tional payoff vectors that allocate rσ,vσ1

to the first player, and so on. It is proved in
(Núñez and Solymosi, 2017) that the set of extreme core allocations of a one-to-one
assignment game coincides with the set of lemaral vectors.

3 The many-to-one assignment market and game

We consider a market where there are two types of agents: a finite set of firms F =
{f1, f2, . . . , fm} and a finite set of workers W = {w1, w2, . . . , wn} where the number of
firms m can be different from the number of workers n. Let N = F ∪ W be the set
of all agents. We sometimes denote a generic firm and a generic worker by i and j,
respectively. Each firm i ∈ F values hiring worker j ∈ W by hij ≥ 0, and each worker
j ∈ W has a reservation value tj ≥ 0. Hence, a pair of firm i ∈ F and worker j ∈ W
can generate a non-negative income aij = max{hij − tj, 0}. If hij ≥ tj , the income aij is
obtained when firm i ∈ F hires worker j ∈ W , and it is shared by means of the salary yj
that the firm pays to the worker. The valuation matrix denoted by A = (aij)(i,j)∈F×W

represents the pairwise income for each possible firm-worker pair. Each firm i ∈ F
would like to hire up to ri ≥ 0 workers and each worker j ∈ W can work for at most one
firm. Then, as long as we do not perform a strategic analysis, a many-to-one assignment
market is the quadruple γ = (F,W,A, r). When we analyze whether an agent may profit
from misrepresenting its true valuations, we describe the market by γ = (F,W, h, t, r).

A matching µ for the market γ = (F,W,A, r) is a set of F ×W pairs such that each
firm i ∈ F appears in at most ri pairs and each worker j ∈ W in at most one pair. We
denote by M(F,W, r) the set of matchings for market γ. A matching µ ∈ M(F,W, r)
is optimal for γ if

∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′

aij holds for any other matching µ′ ∈ M(F,W, r).

We denote by MA(F,W, r) the set of optimal matchings for the market γ. Given
a matching µ ∈ M(F,W, r), the set of workers matched to firm i ∈ F under µ is
µ(i) = {j ∈ W | (i, j) ∈ µ}. It will be convenient to denote the set of workers
unmatched under µ by µ(f0), that is µ(f0) = W \

⋃
i∈F µ(i). Observe that i 6= k ∈ F

implies µ(i)∩µ(k) = ∅, hence µ(f0)∪
⋃

i∈F µ(i) = W is a partition of the set of workers.
Given a many-to-one assignment market γ = (F,W,A, r), we define the income
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maximization linear programming problem by

V(F,W ) = max
∑

i∈F

∑

j∈W

aijxij (4)

s. t.
∑

j∈W

xij ≤ ri, i ∈ F

∑

i∈F

xij ≤ 1, j ∈ W

xij ≥ 0, (i, j) ∈ F ×W.

It is well known that any variable in any basic feasible solution of this LP problem with
integer right hand sides is integral, hence, by the worker capacity inequalities, 0 or 1.
Consequently, the relation (i, j) ∈ µ ↔ xij = 1 defines a bijection between the set of
basic feasible solutions to this LP problem and the set of matchings µ ∈ M(F,W, r).
Henceforth, the optimum value of (4) gives the maximum of the sum of values of the
matched pairs while respecting the capacities of firms.

Given market γ = (F,W,A, r), we also apply the above notation and terminology for
any submarket γ(S,T ) = (S, T, A(S,T ), rS) with S ⊆ F , T ⊆ W , and accordingly restricted
payoff matrix A(S,T ) and capacity vector rS.

Now, let us associate a coalitional game with transferable utility (TU-game) with
this type of two-sided matching markets. Given a many-to-one assignment market
γ = (F,W,A, r), its associated many-to-one assignment game is the pair (N, vγ) where
N = F ∪ W is the set of players and the coalitional function is given by vγ(S ∪ T ) =

max
µ∈M(S,T,rS)

∑
(i,j)∈µ

aij for all S ⊆ F and T ⊆ W .2 For brevity, we denote coalition S ∪ T

with S ⊆ F and T ⊆ W by (S, T ), in particular, one-sided coalitions by (∅, T ) and
(S, ∅). As the union of matchings for disjoint coalitions is a matching for the union
of the coalitions, i.e. µ ∈ M(S, T, rS) and µ′ ∈ M(S ′, T ′, rS′) with S ∩ S ′ = ∅ and
T ∩ T ′ = ∅ implies µ ∪ µ′ ∈ M(S ∪ S ′, T ∪ T ′, rS∪S′), it easily follows that many-to-
one assignment games are superadditive. On the other hand, if ν ∈ M(S, T, rS) is an
optimal matching for coalition (S, T ), that is vγ(S, T ) =

∑
(i,j)∈ν

aij =
∑
i∈S

∑
j∈ν(i)

aij , then

it follows from vγ(i, ν(i)) =
∑

j∈ν(i)

aij for all i ∈ S that vγ(S, T ) =
∑
i∈S

vγ(i, ν(i)). Since

(S, T ) = (∅, ν(f0)) ∪
⋃
i∈S

(i, ν(i)) where ν(f0) denotes the unmatched workers in T under

ν, and vγ(ν(f0)) = 0 =
∑

j∈ν(f0)

vγ(j), we get the following observations.

Proposition 1. In many-to-one assignment games, the following types of coalitions are
inessential:

• any coalition containing at least two firms,

• any single-firm coalition containing more workers than the capacity of the firm,

2When no confusion arises, for a given market γ, we denote its corresponding coalitional function
by v instead of vγ .
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• any one-sided coalition containing at least two players.

Consequently, in an (m + n)-player many-to-one assignment game, among the 2m+n −
1 non-empty coalitions, at most

∑m
i=1

∑ri
t=1

(
n
t

)
≤ 2n − 2 coalitions can be essential.

However, this exponential upper bound is sharp (if all aij pairwise income values are
positive, m = 2, and n = r1 + r2). We will see in Proposition 2 that the core is already
described by a quadratic number of easily identifiable essential coalitions.

As in any coalitional game, the main concern is how to share the worth of the
grand coalition (the total income) among all agents. To do so, we focus on the solution
concept known as the core. Different than one-to-one assignment games, where the only
essential coalitions are the individual ones and the mixed-pairs, here (see Proposition
1), instability may arise from a group of workers and a firm that can be better off by
recontracting among themselves instead of their prescribed agreements.

3.1 Core and competitive salaries

In order to investigate the relationship between the core of many-to-one assignment
markets and other set-valued solution concepts, we need to analyze closely the structure
of the core of these games. Given a many-to-one assignment market γ = (F,W,A, r)
and µ ∈ MA(F,W, r) an optimal matching, (x, y) ∈ R

F
+ × R

W
+ is in the core C(vγ) of

the associated game if and only if for every firm i ∈ F ,

xi +
∑

j∈T

yj ≥
∑

j∈T

aij = vγ(i, T ) for all T ⊆ W with |T | ≤ ri(with equality for T = µ(i))

(5)
and the payoff to unassigned firms or workers is zero.

The above description of the core of a many-to-one assignment game is based on
Proposition 1 and the general equivalence of the core and the essential-core. As we
remarked there, this description is still of exponential size (in the number of players).
Next, we present a quadratic-size equivalent description of the core, just in terms of the
workers’ payoffs. It rests on the observation that in the essential-core description (5)
only those single-firm coalitions are needed for which |T ∩ µ(i)| = ri − 1.

For brevity of exposition, first we balance the model, if needed. In case the total
capacity of the firms

∑
i∈F ri exceeds the number of workers n, we introduce

∑
i∈F ri −

n > 0 dummy workers who can only generate zero income with any firm. Exclusively
from this situation, in case of n >

∑
i∈F ri, we introduce a dummy firm, say f0, requiring

at most r0 = n−
∑

i∈F ri > 0 number of workers, but who can only generate zero income
with any worker. Technically, if needed, we extend matrix A with

∑
i∈F ri − n > 0 full

0 columns, or with one full 0 row. This clearly means that we extend the associated
many-to-one assignment game v with one or more null players. Since the core payoff to
any null player j is xj = 0, the core of the original game is precisely the xj = 0 section of
the core of the extended game, we can assume without loss of generality that the market
γ = (F,W,A, r) is capacity-balanced, i.e. n =

∑
i∈F ri holds. To keep the exposition

simple, we do not introduce any new notation for the possible extended models.
Given a capacity-balanced market γ = (F,W,A, r) (n =

∑
i∈F ri), we will always

assume, due to the non-negativity of matrix A without loss of generality, that in any
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optimal matching µ ∈ MA(F,W, r) any firm i ∈ F is assigned precisely ri workers
(|µ(i)| = ri), and no worker is unmatched under µ. For any worker j ∈ W , let jµ ∈ F
denote the unique firm for which j ∈ µ(jµ) holds, that is jµ = µ−1(j).

The next description of the core in terms of the workers’ payoffs follows easily from
(5) and is a simplification of the one already given in (Sotomayor, 2002) for the general,
not necessarily capacity-balanced, market.

Proposition 2. Given a capacity-balanced many-to-one assignment market γ = (F,W,A, r),
let µ ∈ MA(F,W, r) be an optimal matching. Then, (x, y) ∈ R

F × R
W is in the core of

the associated game C(vγ) if and only if

(i) 0 ≤ yj ≤ ajµj for any j ∈ W ;

(ii) yk − yj ≥ ajµk − ajµj for any j, k ∈ W such that jµ 6= kµ;

(iii) xi =
∑

j∈µ(i)

(aij − yj) for all i ∈ F .

Notice that the number of constraints is 2n =
∑

i∈F 2ri in item (i),
∑

i∈F ri(n−ri) =
n
∑

i∈F ri −
∑

i∈F r2i ≤ n2 −
∑

i∈F ri = n2 − n in item (ii), and m ≤ n in item (iii),
altogether at most n2 + 2n.

Also, given any vector of salaries y ∈ R
W that satisfies constraints (i) and (ii) above

for some optimal matching µ, the payoff to each firm is uniquely determined. Let us
denote by C(W ) the set of salaries (or wages) that satisfy (i) and (ii), that is, the
projection of the core to the space of workers’ payoffs. It is proved in (Sotomayor, 2002)
that C(W ) is endowed with a lattice structure under the partial order induced by R

W .
In fact, the reader will see that constraints (i) and (ii) in Proposition 2 define what is
named a 45-degree polytope in (Quint, 1991).

Here is an illustrative example of the above core description.

Example 3. Consider a many-to-one assignment market γ = (F,W,A, r) where F =
{f1, f2}, W = {w1, w2, w3} are the set of firms and the set of workers respectively, and
the capacities of the firms are r = (2, 1). The pairwise valuation matrix is the following:

A =

(w1 w2 w3

f1 8 6 3
f2 7 6 4

)
.

Since the (unique) optimal matching assigns workers w1 and w2 to firm f1, and w3 to
firm f2, in any core allocation x1 = (8 + 6)− y1 − y2 and x2 = 4− y3 hold. Henceforth,
in terms of the workers payoffs, the core is described by the following system (given in
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two equivalent forms):

y1 y2 y3 ≥ 0
y1 ≤ 8

y2 ≤ 6
y3 ≤ 4

−y1 y3 ≥ −5 = 3− 8
−y2 y3 ≥ −3 = 3− 6

y1 −y3 ≥ 3 = 7− 4
y2 −y3 ≥ 2 = 6− 4

0 ≤ y1 ≤ 8
0 ≤ y2 ≤ 6
0 ≤ y3 ≤ 4
3 ≤ y1 −y3 ≤ 5
2 ≤ y2 −y3 ≤ 3

Notice the similarities to the one-to-one assignment case, but due to the capacity r1 = 2
of firm f1, there is no direct relation between the payoffs to its optimally matched
workers, two-way direct pairwise comparisions are only between workers assigned to
different firms.

Figure 1 illustrates the C(W ) of this example, where the 45-degree lattice structure
can be seen.

y1

y3

0 1 2 3 4 5 6 7 8

1

2

3

4

1 2 3 4 5 6

Figure 1: C(W ) for the many-to-one market of Example 3

From the description of the core in Proposition 2, it follows straightforwardly that it
coincides with the set of competitive equilibrium payoff vectors, that is, C(W ) coincides
with the set of competitive salary vectors. To see that, we adapt the usual definition of
competitive prices to our job market setting with salaries.

Let γ = (F,W,A, r) be a many-to-one job market, µ ∈ M(F,W, r) a matching and
y ∈ R

W
+ a vector such that yj is the salary of worker j ∈ W . The pair (µ, y) is a

competitive equilibrium for this market if and only if:

1. For each i ∈ F , µ(i) ∈ Di(y), where Di(y) is the set of R ⊆ W , |R| ≤ ri such that

∑

j∈R

(aij − yj) ≥
∑

j∈S

(aij − yj), for all S ⊆ W such that |S| ≤ ri and
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2. yj = 0 if worker j is not assigned by µ to any firm i ∈ F .

We then say that y ∈ R
W is a vector of competitive salaries and it is compatible with

matching µ. It is well known that µ must be an optimal matching for γ and that the
competitive salary vector y is also compatible with any other optimal matching.

On the domain of many-to-one assignment markets, a competitive (equilibrium) rule
ϕ assigns to each market (F,W, h, t, r) a competitive equilibrium ϕ(h, t) = (µ, y). If we
assume (F,W, r) fixed, then a rule assigns a competitive equilibrium to each profile of
reported valuations (h, t). Such a rule is non-manipulable by firm i ∈ F if reporting its
true valuations h = (hij)j∈W is a dominant strategy for firm i. Similarly, a rule ϕ is
non-manipulable by worker j ∈ W if reporting his/her true valuation tj is a dominant
strategy.

4 Core, kernel and bargaining set

Another relevant result for the one-to-one assignment game is the coincidence between
the core and the bargaining set (Solymosi, 1999). The bargaining set is a set-solution
concept for coalitional games based on a notion of objections and counterobjections
(Davis and Maschler, 1967). Whenever the core is non-empty, the bargaining set con-
tains the core. The coincidence between the core and the bargaining set, when it holds,
is a robustness property of the core since it guarantees that any allocation outside the
core has a justified objection (an objection that has no counterobjection) and hence can
be dismissed when looking for a cooperative agreement on the distribution of the worth
of the grand coalition.

Next, we focus on the relationship between the core and the bargaining set for many-
to-one assignment markets. We consider another set-wise solution concept known as the
kernel. The kernel, introduced by Davis and Maschler (1965), is a non-empty subset of
the classical bargaining set of Davis and Maschler (1967) for all games with a non-empty
set of imputations (individually rational and efficient payoff vectors). Whenever the core
is non-empty, the intersection between the kernel and the core is non-empty.

To this end, let us recall the definition of the kernel of a coalitional game. Since our
game is zero-monotonic, the kernel is defined as follows:

K(v) = {z ∈ I(v) | sij(z) = sji(z), for all i, j ∈ F ∪W},

where sij(z) = maxi∈S,j 6∈S{v(S)−z(S)} is the maximum excess at imputation z of coali-
tions containing i and not containing j. An imputation in the kernel is pairwise balanced
in the sense that the maximum excess that agent i can attain with no cooperation of j
equals the maximum excess that j can attain without the cooperation of i.

Next example shows that the inclusion of the kernel in the core, and also the co-
incidence of the core with the bargaining set, do not carry over to the many-to-one
assignment game. We remark that this five-player counter-example is of the smallest
size possible, since for any balanced game with at most four players the bargaining set
and the core coincide (Solymosi, 2002), hence the kernel is included in the core (Peleg,
1966).
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Example 4. Consider a many-to-one assignment market γ = (F,W,A, r) where F =
{f1, f2} is the set of firms, W = {w1, w2, w3} is the set of workers, and the capacities of
the firms are r = (2, 2). The per-unit pairwise valuation matrix is the following:

A =

(w1 w2 w3

f1 1 1 1
f2 1 1 1

)
.

The core contains a unique point, C(vγ) = {(0, 0; 1, 1, 1)}. One can easily check that
imputation (x, y) = (1, 1; 1/3, 1/3, 1/3) is not a core allocation, but it lies in the kernel
since for any pair of agents the maximum surplus is the same. Let us show that this is
indeed the case. The corresponding many-to-one assignment game (F ∪W, vγ) and the
excesses at imputation (x, y) = (1, 1; 1/3, 1/3, 1/3), that is, e(S, (x, y)), are:

vγ(S) x1 x2 y1 y2 y3 e(S, (x, y))
0 1 . . . . −1
0 . 1 . . . −1
0 . . 1 . . −1/3
0 . . . 1 . −1/3
0 . . . . 1 −1/3
0 1 1 . . . −2
1 1 . 1 . . −1/3
1 1 . . 1 . −1/3
1 1 . . . 1 −1/3
1 . 1 1 . . −1/3
1 . 1 . 1 . −1/3
1 . 1 . . 1 −1/3
0 . . 1 1 . −2/3
0 . . 1 . 1 −2/3
0 . . . 1 1 −2/3

vγ(S) x1 x2 y1 y2 y3 e(S, (x, y))
1 1 1 1 . . −4/3
1 1 1 . 1 . −4/3
1 1 1 . . 1 −4/3
2 1 . 1 1 . 1/3
2 1 . 1 . 1 1/3
2 1 . . 1 1 1/3
2 . 1 1 1 . 1/3
2 . 1 1 . 1 1/3
2 . 1 . 1 1 1/3
0 . . 1 1 1 −1
2 1 1 1 1 . −2/3
2 1 1 1 . 1 −2/3
2 1 1 . 1 1 −2/3
2 1 . 1 1 1 0
2 . 1 1 1 1 0
3 1 1 1 1 1 0

Next, we calculate the maximum excess at the point (x, y) = (1, 1; 1/3, 1/3, 1/3) for
all possible pairs of agents. Since firms (workers) have the same payoff, x1 = x2 = 1
(y1 = y2 = y3 = 1/3), it is sufficient to check the maximum excess for the following
pairs:

• If i = f1 and j = f2, then max
f1∈S
f2 /∈S

e(S, (x, y)) = 1/3 = max
f2∈S
f1 /∈S

e(S, (x, y)).

• If i = w1 and j = w2, then max
w1∈S
w2 /∈S

e(S, (x, y)) = 1/3 = max
w2∈S
w1 /∈S

e(S, (x, y)).

• If i = f1 and j = w1, then max
f1∈S
w1 /∈S

e(S, (x, y)) = 1/3 = max
w1∈S
f1 /∈S

e(S, (x, y)).

12



Then, for any pair of agents the maximum excess over coalitions containing one of
them but not the other is equal at the point (x, y) = (1, 1; 1/3, 1/3, 1/3). Hence, the
imputation (x, y) = (1, 1; 1/3, 1/3, 1/3) lies in the kernel. Since it is not a core allocation,
it implies that the kernel is not a subset of the core.

In fact, making use of the facts that (i) the two firms, as well as any two workers
are symmetric players3 in this game, and (ii) symmetric players get the same payoff at
any point of the kernel, it can be easily proved that the kernel of this game is the set
{(α, α; 1− 2α

3
, 1− 2α

3
, 1− 2α

3
) | 0 ≤ α ≤ 3/2}. It is the line segment with the core element

(0, 0; 1, 1, 1) as one extreme point, and the imputation (3/2, 3/2; 0, 0, 0) where the firms
take all the value as the other extreme point. Notice that the kernel allows for more
fair distributions of the value of the market between firms and workers, than the one
proposed by the core.4

Since the kernel is a subset of the classical bargaining set, all these points (α, α; 1−
2α
3
, 1− 2α

3
, 1− 2α

3
) that are in the kernel are also in the bargaining set. This implies that

the core and the classical bargaining set do not coincide.

Corollary 5. In the many-to-one assignment game,

(i) The kernel needs not be a subset of the core.

(ii) The classical bargaining set needs not coincide with the core.

Corollary 5 implies that the coincidence between the classical bargaining set and the
core cannot be carried over from the one-to-one case to the many-to-one and to the
many-to-many case. Our result showing that the coincidence between the core and the
classical bargaining set is not satisfied is a remarkable exception among several classes
of related combinatorial optimization games. Solymosi et al. (2003) showed the coin-
cidence result for permutation games. Solymosi (2008) proved (among other variants)
that the classical bargaining set coincides with the core for several classes including
one-to-one assignment games, tree-restricted superadditive games, and simple network
games. Bahel (2016) obtained the same result for veto games. Recently, Bahel (2021)
obtained the coincidence result for the so-called quasi-hyperadditive games which con-
tain one-to-one assignment games. Atay and Solymosi (2018) extended the coincidence
result from one-to-one assignment games to a class of multi-sided assignment games
known as the supplier-firm-buyer games.

Although we have learned that the kernel may have imputations outside the core,
we know that, whenever the core is non-empty, like in the case of the many-to-one
assignment games, the kernel always contains some core elements. The reason is that,
for games with non-empty core, it is well-known that the nucleolus is always in the
intersection of the kernel and the core.

As in the one-to-one assignment game (Granot and Granot, 1992) some simplifica-
tions can be done to obtain those core allocations that also belong to the kernel. First,

3Two players i and j are symmetric in a coalitional game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all
S ⊆ N \ {i, j}.

4For example, at the kernel-allocation (3/4, 3/4; 1/2, 1/2, 1/2) the shares of the two sides are equal.
In this example, the Shapley value (Shapley, 1953), is φ(v) = (78/120, 78/120; 68/120, 68/120, 68/120)
and it is also in the kernel of the game.
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only essential coalitions are to be taken into account, and secondly, not all pairs of
agents need to be considered.

We have defined a matching as a set of firm-worker pairs that do not violate the
capacities of firms and workers, but we can also understand it as a partition of F ∪W
in essential coalitions. If (i, j1), (i, j2), . . . , (i, jk) are pairs in a matching µ, then the
coalition T = {i, j1, j2, . . . , jk} is one element of the partition of F ∪W induced by µ.
This fact will simplify notations in the next result.

Proposition 6. Let γ = (F,W,A, r) be a many-to-one assignment game. Then,

K(vγ) ∩ C(vγ) = {z ∈ C(vγ) | sij(z) = sji(z) for all {i, j} ∈ T ⊆ Φ(A)},

where Φ(A) is the set of essential coalitions that belong to all optimal matchings.

Proof. Let z ∈ C(vγ), S an arbitrary coalition of F ∪W and µS = {T1, T2, . . . , Tr} an
optimal matching for coalition S. Then,

e(S, z) = vγ(S)− z(S) =
∑

T∈µS

(vγ(T )− z(T )) ≤ vγ(Tk)− z(Tk), for all Tk ∈ µS,

where the inequality follows from the fact that excesses at a core allocation are always
non-positive. Then, the maximum excess at z over coalitions containing agent i and not
containing agent j is always attained at an essential coalition. This implies that only
essential coalitions are to be considered to find those core elements that belong to the
kernel.

Moreover, if we take two firms i1, i2 ∈ F , then

si1i2(z) = e(S, z) = 0 = e(T, z) = si2i1(z),

where S = {i1} ∪ µ(i1) and T = {i2} ∪ µ(i2), for any optimal matching µ.
Similarly, if we take two workers that are not assigned to the same firm in an optimal

matching µ, that is, (i1, j1) ∈ µ and (i2, j2) ∈ µ, then

sj1j2(z) = e(S, z) = 0 = e(T, z) = sj2j1(z),

where S = {i1} ∪ µ(i1) and T = {i2} ∪ µ(i2).
Finally, if we take a firm i1 and a worker j2 that are not matched in some optimal

matching µ, that is, there is µ ∈ MA(F,W, r) and i2 ∈ F \ {i1} such that (i2, j2) ∈ µ,
then also si1j2(z) = e(S, z) = 0 = e(T, z) = sj2i1(z), where S = {i1} ∪ µ(i1) and
T = {i2} ∪ µ(i2).

To sum up, only firm-worker pairs that are matched in all optimal matchings and
pairs of workers that are matched to the same firm in all optimal matchings are to be
considered.

As a consequence, if a market (F,W,A, r) is such that there is no essential coalition
that belongs to all optimal matchings, then all core elements are in the kernel. This is
precisely the case of Example 4.
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To complete this section, we include some remarks on some single-valued solutions:
the fair-division point, the nucleolus, and the τ -value.5

Regarding the computation of the nucleolus of the many-to-one assignment game,
we simply point out that only the essential coalitions need to be considered in the
lexicographic minimization procedure. This is a notable simplification but still of expo-
nential size. It remains for further research to see whether the quadratic many essential
coalitions which describe the core (Proposition 2) are also sufficient to determine the
nucleolus.

Secondly, because of the existence of an optimal core allocation for each side, which
is the worst core allocation for the opposite side, the fair division point can be defined,
as in the one-to-one assignment game, as the midpoint of these two core allocations.
The convexity of the core guarantees this midpoint is also a core allocation. For the
one-to-one assignment game, the fair division point coincides with the τ -value, which
is the only efficient point in the segment between the utopia point, where each agent
obtains his/her marginal contribution, and the minimum rights point (see (Tijs, 1981)
for the formal definition).

Consider the many-to-one assignment market introduced in Example 3. One can
calculate, or check with help of the Kohlberg-criterion, that the nucleolus is (4, 2.25;
5.75, 4.25, 1.75) 6, the fair division point is (4.5, 2; 5.5, 4, 2), and the τ -value is (143/28, 52/28;
149/28, 108/28, 52/28). The τ -value does not coincide with the fair division point and
moreover it does not lie in the core since, for instance, the core constraint for the coali-
tion {f2, w3} does not hold as 52/28 + 52/28 = 104/28 < 4 = vγ({f2, w3}). Thus, we
observe that for the many-to-one assignment game, and hence for the transportation
game, the τ -value need not be a core allocation.

5 Maximum and minimum competitive salaries

In spite of what we observe in Example 4 above, generically the core of a many-to-
one assignment game contains infinitely many allocations, each of them supported by a
vector of competitive salaries. In particular, this is the case when the optimal matching
is unique, and then the dimension of the core is (m+ n)−m = n.

Special attention has been paid to the vectors of maximum and minimum competitive
prices (or salaries in our case). For many-to-one assignment market γ = (F,W,A, r), as
a particular case of the model in (Gul and Stachetti, 1999), and normalizing at zero the
reservation values of the workers, these two extreme vectors of competitive salaries can

5The nucleolus of a coalitional game (N, v) is the payoff vector η(v) ∈ R
N that lexicographically min-

imizes the vector of decreasingly ordered excesses of coalitions among all possible efficient payoff vectors
(Schmeidler, 1969). The fair-division point of a one-to-one assignment market is the midpoint of the
buyer-optimal and the seller-optimal core allocations (Thompson, 1981). The τ -value is a single-valued
solution for coalitional games introduced in (Tijs, 1981). It is known that for one-to-one assignment
games the τ -value and the fair-division point coincide (Núñez and Rafels, 2002).

6The nucleolus can be calculated efficiently by means of the algorithm introduced by Benedek et al.
(2021).
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be obtained from

yj = vγ(F ∪W )− vγ(F ∪ (W \ {j}), for all j ∈ W, (6)

y
j
= vγ+j (F ∪ (W ∪ {j′}))− vγ(F ∪W ), for all j ∈ W, (7)

where the value vγ+j (F ∪ (W ∪{j′})) is obtained by duplicating in the valuation matrix
A the column of worker j and looking for an optimal matching among those that do not
allocate the two copies of worker j to the same firm.

It is well known that if all firms have a unitary capacity, then y
j
= vγ((F \ {jµ}) ∪

W )−vγ((F \{jµ})∪(W \{j})) and the maximum core payoff of the firm assigned to j is
its marginal contribution xjµ = vγ(F ∪W )−vγ((F \{jµ})∪W ). In the many-to-one case,
those firms with capacity greater than one may not attain their marginal contribution
in the core. Take for instance firm f1 in Example 3, since the minimum competitive
salaries are y = (3, 2, 0), the maximum core payoff of this firm is (8 − 3) + (6 − 2) = 9
that is below vγ(F ∪W )− vγ((F \ {f1}) ∪W ) = 11.

There exist in the literature different axiomatic characterizations of the minimum
and/or the maximum competitive equilibrium rules for the one-to-one assignment games,
some of them based on non-manipulability properties:7 the firm-optimal (worker-optimal)
competitive rules are the only competitive rules that cannot be manipulated by any firm
(worker), see for instance (Pérez-Castrillo and Sotomayor, 2017). This same reference
shows that this characterization can be extended to the worker-optimal competitive rule
in the many-to-one assignment market. Moreover, a worker (even with unitary capacity)
may manipulate any competitive rule that does not assign this worker the maximum
competitive salary.

It is also well known that, in the many-to-one case, the firm-optimal competitive
rules (that is, the rules that select the minimum competitive salaries) are manipulable
by firms with capacity greater than one, see for instance (Sotomayor, 2002). However,
the firm-optimal competitive rules cannot be manipulated by a firm i ∈ F by constantly
overreporting its valuations (Domènech and Núñez, 2022), that is, by reporting h′

ij =
hij + c for all j ∈ W and c > 0.

We now characterize the minimum competitive rules not by being non-manipulable
by workers but by being invariant under the constant decrease of a firm’s valuations.

Definition 7. A rule ϕ = (µ, y) on the domain of many-to-one assignment games is
invariant under the constant decrease of a firm’s valuation (INV) if, for all market
γ = (F,W, h, t, r), all i0 ∈ F and c ≥ 0, if

(i) hc
i0j = hi0j − c and aci0j = max{hi0j − c− tj , 0}, for all j ∈ W ,

(ii) hc
ij = hij , a

c
ij = aij for all i ∈ F \ {i0} and j ∈ W ,

(iii) c ≤ ai0j for all (i0, j) ∈ µ and all µ ∈ MA(F,W, r) and

(iv) MA(F,W, r) ⊆ MAc(F,W, r),

7Other axiomatic characterizations of the optimal competitive rules in the one-to-one case but based
on monotonicity properties of the valuations can be found in (van den Brink et al., 2021).
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then yj(a) = yj(a
c) for all j ∈ µ(i0).

This invariance states that if a firm decreases all its valuations in a constant amount
until a certain threshold c∗ such that all initial optimal matchings are still optimal, then
the competitive salaries chosen by the rule for the workers hired by this firm do not
change. For instance, if this firm has to pay a fee for each contract it signs, then this fee
is entirely paid by the firm and does not affect the salary of the workers that are hired.

Theorem 8. The minimum competitive rule is the only competitive rule that is invariant
under the constant decrease of a firm’s valuations.

Proof. It is proved in (Domènech and Núñez, 2022) that, for the multiple partners as-
signment game (where both firms and workers may have capacities greater than one),
and under the assumptions of Definition 7, the payoff of any worker for each partnership
under any firm-optimal stable rule is invariant. Since in the many-to-one assignment
market, the stable payoffs of workers coincide with their competitive equilibrium pay-
offs, we get that the minimum competitive salary of the workers hired by a firm i0 that
decreases its valuations by the same amount c, is invariant, as long as c satisfies (iii)
and (iv): y

j
(a) = y

j
(ac) for all j ∈ µ(i0), where µ is compatible with y.

To prove uniqueness, let ϕ = (µ, yϕ) be a competitive rule that is invariant under the
constant decrease of a firm’s valuations. When applying ϕ to any many-to-one market
(F,W,A, r), the competitive salaries yϕ(a) are also competitive in a related one-to-one
assignment market (F̃ ,W, Ã) where there are as many copies of each firm i ∈ F as their
capacities ri indicate (Sotomayor, 1992). The invariance of the salaries yϕ(a) under the
constant decrease of a firm’s valuations implies the invariance of yϕ(ã) = yϕ(a) under
the constant decrease of the valuations of all copies of i ∈ F and, from Theorem A.4
and Corollary A.5 in (Domènech and Núñez, 2022), this implies yϕ(ã) = yϕ(ã). Then,
(Sotomayor, 1992) implies yϕ(a) = yϕ(a) and hence ϕ is the minimum competitive rule
of the many-to-one assignment market.

It is shown in (Domènech and Núñez, 2022), for more general many-to-many multiple
partners assignment markets, that the maximum c under the conditions (iii) and (iv)
in Definition 7 is c∗ = minj∈µ(i){aij − y

j
(a)} or, equivalently, it is the minimum c such

that the valuation matrix ac has an optimal matching with a zero entry.

6 The set of extreme competitive salary vectors

Besides the vectors of maximum and minimum competitive salaries, there may be several
other extreme points in the set of competitive salaries, which correspond to the set of
extreme core allocations. The description of these extreme points gives information
about how large this set is, and how many different stable agreements can be attained
in the market. The digraph we introduce next, associated with each vector of competitive
salaries, provides a characterization of all extreme vectors of competitive salaries, not
just of the maximum and minimum ones.
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Definition 9. Let γ = (F,W,A, r) be a capacity-balanced many-to-one assignment
market and µ ∈ MA(F,W, r) be an optimal matching. For each vector of competitive
salaries y ∈ C(W ), we define the tight digraph (W0, E

y) with set of nodesW0 := W∪{0},
where 0 is a fictitious worker whose salary is fixed to y0 = 0 and with the set of arcs Ey

such that

(j, k) ∈ Ey ↔ yk − yj =





0 if j = 0, k ∈ W ;

−ajµj if j ∈ W, k = 0;

ajµk − ajµj if j ∈ W, k ∈ W \ µ(jµ).

This tight digraph is inspired by the one introduced in (Balinski and Gale, 1990)
and also used in (Hamers et al., 2002) to study extreme core points of the one-to-one
assignment game. There, the nodes of the graph consist of the agents on both sides
of the market, not just from one side as we do for the many-to-one case. And also,
their graph is not directed since it is based on the constraints xi + yj ≥ aij where both
variables have the same sign. They find that the extreme core points are those core
points with a tight graph that has an agent with zero payoff in each component. In our
setting, we replace that property with connectedness to the fixed 0 payoff node, hence
connectedness of the underlying undirected graph (the base-graph) of the tight digraph.
Besides, we also characterize the maximum and the minimum competitive salary vectors
with an (easily verifiable) additional property of the tight digraph.

Before the general discussion, we illustrate the idea and foreshadow the results on
the market situation of Example 3.

Example 10. We revisit Example 3 and introduce a fictitious worker 0 who is optimally
matched to a fictitious firm with capacity 1, denoted 0µ, because in any matching of the
extended capacity-balanced market the two fictitious agents are required to be paired.
Their payoffs are fixed to 0. The virtual possibility of being matched to the fictitious
agent on the other side will represent the outside option of an agent, thus the pairwise
surplusses with them are set to zero. The extended market, with the optimally assigned
firm-worker pairs boxed, is given on the left below. For brevity, we represent the workers
and the firms by their index. On the right below we present the description of C(W )
where all constraints are written in a unified way.

0 1 2 3

0µ 0 0 0 0 r0µ = 1

1 0 8 6 3 r1 = 2

2 0 7 6 4 r2 = 1

−0 +y1 ≥ 0 = 0− 0

−0 +y2 ≥ 0 = 0− 0

−0 +y3 ≥ 0 = 0− 0

+0 −y1 ≥ −8 = 0− 8

+0 −y2 ≥ −6 = 0− 6

+0 −y3 ≥ −4 = 0− 4

−y1 +y3 ≥ −5 = 3− 8

−y2 +y3 ≥ −3 = 3− 6

+y1 −y3 ≥ 3 = 7− 4

+y2 −y3 ≥ 2 = 6− 4
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Due to this special structure, we associate a directed graph that represents by arcs
the inequalities which are tight (satisfied as equality) at a given y ∈ C(W ) and decide
if y is an extreme point by checking whether the base-graph is connected.

Recall that in this market the minimum competitive salary vector is (3, 2, 0) that
makes the following inequalities tight: −0 + y3 = 0, y1 − y3 = 3, and y2 − y3 = 2. The
associated digraph is pictured on the left in Figure 2. At the maximum competitive
salary vector (8, 6, 4) the following inequalities are tight: 0 − y1 = −8, 0 − y2 = −6,
0− y3 = −4, and y2 − y3 = 2. The associated digraph is pictured on the right in Figure
2.

0

1

2

3

0

1

2

3

Figure 2: digraph of minimum vector (3, 2, 0), digraph of maximum vector (8, 6, 4)

In both cases the base-graph is connected. Notice that in the tight digraph of the
minimum competitive salary vector (3, 2, 0) node 0 is the only source, while in the tight
digraph of the maximum competitive salary vector (8, 6, 4) node 0 is the only sink.

Similarly, the tight digraphs associated with CE vectors (3, 3, 0) and (7, 6, 4), pic-
tured, respectively, on the left and on the right in Figure 3, are both connected. Thus,
both vectors are also extreme points of C(W ). However, in neither of these tight di-
graphs node 0 is the only source or the only sink.

0

1

2

3

0

1

2

3

Figure 3: digraph of extreme vector (3, 3, 0) digraph of extreme vector (7, 6, 4)

Indeed, in case of (3, 3, 0), node 2 is also a source, indicating that none of the
constraints which contains −y2 is tight, hence y2 can be decreased (with a sufficiently
small positive amount) without leaving the feasible solution set. Therefore, (3, 3, 0)
cannot be the minimum competitive salary vector. Similarly, in case of (7, 6, 4), node 1
is also a sink, indicating that none of the constraints which contain +y1 is tight, hence
y1 can be increased (with a sufficiently small positive amount) without violating any of
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the lower-bound constraints. Therefore, (7, 6, 4) cannot be the maximum competitive
salary vector.

We now formally establish the characterization of the extreme vectors of competitive
salaries of the many-to-one assignment game by properties of the corresponding tight
digraphs (Definition 9).

Theorem 11. Let γ = (F,W,A, r) be a capacity-balanced many-to-one assignment mar-
ket in which µ is an optimal matching. Then

(A) y ∈ C(W ) is an extreme vector of competitive salaries if and only if the base-graph
of the associated tight digraph (W0, E

y) is connected.

(B) y ∈ C(W ) is the minimum vector of competitive salaries if and only if its tight
digraph (W0, E

y) contains a 0-sourced directed spanning tree (i.e. all arcs of the
spanning tree are directed away from node 0).

(C) y ∈ C(W ) is the maximum vector of competitive salaries if and only if its tight
digraph (W0, E

y) contains a 0-sinked directed spanning tree (i.e. all arcs of the
spanning tree are directed towards node 0).

Proof. First, we prove the “only if ” part of characterization (A). Suppose on the con-
trary that the base-graph of the tight digraph associated with an extreme vector y ∈
C(W ) is not connected. Then letW ′ ⊂ W be the node set of a component which does not
contain node 0. Now, let us define ε = min{(yk−yj)−(ajµk−ajµj) : j ∈ W ′, k ∈ W0\W

′},
with yk = ajµk = 0 if k = 0. Since there are no arcs between W ′ and the rest of the
nodes W0 \W

′, we have ε > 0. If we define y′j = yj + ε, y′′j = yj − ε for all j ∈ W ′, and
y′k = y′′k = yk for all k ∈ W0 \W

′, both vectors y′ and y′′ also belong to C(W ). However,
y = 1

2
y′ + 1

2
y′′ ∈ C(W ), which contradicts the assumption that y is an extreme point.

Second, we prove the “if ” part of (A). If the base-graph of the tight digraph associ-
ated with a vector y ∈ C(W ) is connected, then there is a path from node 0 to any node
j ∈ W , that is a sequence of nodes 0 = j0, j1, . . . , jk = j with k ≥ 1 such that any two
consecutive nodes are the two endpoints of an arc. If (jhjh+1) ∈ Eµ (0 ≤ h ≤ k−1) then
it is called a forward arc, if (jh+1jh) ∈ Eµ (0 ≤ h ≤ k − 1) then it is called a backward
arc. In case nodes jh and jh+1 (0 ≤ h ≤ k−1) are connected by both types of arcs in the
tight digraph, we choose one of them arbitrarily for the path. If we add the equations
yh+1 − yh = ahµh+1 − ahµh related to the forward arcs in this path, and subtract the
sum of the equations yh − yh+1 = a(h+1)µh − a(h+1)µh+1 related to the backward arcs, all
variables yh, 1 ≤ h ≤ k−1 (if any) cancel out, only yj−y0 = yj remains on the left side.
Thus, we get yj =

∑
(h,h+1)∈Eµ(ahµh+1−ahµh)−

∑
(h+1,h)∈Eµ(a(h+1)µh−a(h+1)µh+1). Since

all salaries yj (j ∈ W ) are uniquely determined by the tight constraints, their vector y
is an extreme point of C(W ).

We only prove the characterization for the minimum vector of competitive salaries
in (B), the proof for the maximum vector in (C) goes in an analogous way.

Assume first that y ∈ C(W ) is the minimum vector of competitive salaries. If there
is a node j ∈ W with no incoming arc then all constraints in which yj appears with +1
coefficient are satisfied as strict inequalities, so while keeping all other variables fixed,
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we can decrease yj with a sufficiently small positive amount without violating any of
these constraints. Besides, we actually increase the left hand side of those greater-or-
equal inequalities in which yj appears with −1 coefficient, and we do not change the
left hand side of the rest of the constraints. This would contradict the minimality of yj.
Thus, none of the nodes j ∈ W can be a source at the minimum vector of competitive
salaries. A similar argument shows that there must be an arc going out from node 0,
for otherwise we could decrease all salaries yj (j ∈ W ) with a sufficiently small positive
amount without violating any CE constraint, again a contradiction to the minimality of
vector y. Combining these two observations with the finiteness of the number of nodes,
we conclude that there must exist a directed path (i.e. containing only forward arcs)
from node 0 to any node j ∈ W , implying that the tight digraph (W0, E

y) must contain
a 0-sourced directed spanning tree.

To see the converse implication in (B) for the minimum vector of competitive salaries,
assume that for an arbitrary y ∈ C(W ) the associated tight digraph (W0, E

y) contains a
0-sourced directed spanning tree. Then there exits a directed path 0 = j0, j1, . . . , jk = j
with k ≥ 1 from node 0 to any node j ∈ W containing only forward arcs. Thus, if we
add the related inequalities y′h+1 − y′h ≥ ahµh+1 − ahµh along this directed path, we get
y′j ≥

∑
(h,h+1)∈Eµ(ahµh+1 − ahµh) for any feasible vector y′ ∈ C(W ). For the selected

y ∈ C(W ), all these constraints hold as equalities, thus, yj = min{y′j : y
′ ∈ C(W )} for

all j ∈ W , implying that y ∈ C(W ) is the minimum vector of competitive salaries.

We remark that a tight digraph might contain a directed cycle, which might even
contain node 0, but only if there are alternative optimal matchings in the many-to-one
assignment market. If the optimal matching is unique, like in Example 10, node 0 is
either a source or a sink (but not both) in the tight digraph associated with any extreme
salary vector.

We conclude this section with an immediate consequence of Theorem 11.

Corollary 12. Let γ = (F,W,A, r) be a capacity-balanced many-to-one assignment
market in which µ is an optimal matching, and let y ∈ C(W ). If y is the vector of
minimum (resp. maximum) competitive salaries, then there is a worker j ∈ W with
salary yj = 0 (resp. yj = ajµj).

7 The max-min salary vectors

In this section we intend to compute the set of extreme core allocations or, equivalently,
extreme competitive salary vectors of the many-to-one assignment markets. A natu-
ral first approach is to consider the relationship between the extreme core allocations
and some lexicographic allocation procedures. This approach has been applied by (i)
Hamers et al. (2002) to show that each extreme core allocation of a one-to-one assign-
ment game is a marginal payoff vector and by (ii) Izquierdo et al. (2007) to see that
each such extreme point is the result of a lexicographic minimization procedure on the
set of rational allocations: for each order on the set of agents, let the payoff to the
first player in the order be zero and, for each following agent, compute the minimum
payoff that satisfies all core inequalities with his/her predecessors while preserving the

21



payoffs that they have already been allocated. More recently, (iii), Núñez and Solymosi
(2017) prove that each extreme core allocation of the one-to-one assignment game is the
result of a lexicographic maximization over the set of dual rational allocations (lemar-
als). However, it is easy to find examples (see Example A in the Appendix) showing
that none of these three procedures allows to describe all the extreme core allocations
of many-to-one assignment markets.

The characterization of the extreme competitive salary vectors of the many-to-one
assignment game by means of the tight digraphs given in Theorem 11 will allow to
describe a procedure to obtain all these extreme points. We will see that the extreme
competitive salary vectors of these games also correspond to a sequence of lexicographic
optimization, where, for each given order, some workers maximize their salary while
some other workers minimize it, always preserving what has been allocated to their
predecessors.

There are two main differences between the following definition of the max-min
salary vectors and the lexicographic procedures applied to the one-to-one assignment
game: only workers are now considered and each order on the set of workers must
be completed with an indication of whether the worker in this position maximizes or
minimizes his/her salary.

Let θ : {1, . . . , n = |W |} −→ W be an order on the set of workers, where θ(i) is the
worker in the ith-position, and we can also write θ = (j1, j2, . . . , jn). We denote by ΣW

the set of all orders on W . Given a worker j ∈ W , P θ
j = {k ∈ W | θ−1(k) < θ−1(j)} is

the set of predecessors of j according the order θ.
Then, an extension of the order θ is

θ̃ : {1, . . . , n = |W |} −→ W × {min,max}

i 7→ θ̃(i) =





(θ(i),min) = θ(i)
or

(θ(i),max) = θ(i),

where θ(i) means that worker is in ith position and will minimize his/her salary under
some constraints. Similarly, θ(i) means that the ith player in the order will maximize

his/her salary under some constraints. We denote by Σ̃W the set of all extended orders

on W . Clearly, |ΣW | = n! and |Σ̃W | = n! · 2n, where n = |W | is the number of workers.

Definition 13. Let (F,W,A, r) be a capacity-balanced many-to-one assignment game,
µ an optimal matching, θ = (j1, j2, . . . , jn) an order on W and θ̃ an extension of θ. The

related max-min salary vector yθ̃ satisfies

yθ̃j1 =

{
0 if θ̃(1) = θ(1)

ajµ
1
j1 if θ̃(1) = θ(1),

and for all 1 < r ≤ n,

yθ̃jr =

{
maxj∈P θ

jr
,jµ 6=jµr {yj − ajµj + ajµjr , 0} if θ̃(r) = θ(r)

minj∈P θ
jr
,jµ 6=jµr

{yj − ajµr j + ajµr jr , ajµr jr} if θ̃(r) = θ(r).
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To give an interpretation to these vectors, recall from Proposition 2 that the core
constraints worker jr must satisfy are 0 ≤ yjr ≤ ajµr jr and

ajµjr − ajµj ≤ yjr − yj ≤ ajµr jr − ajµr j, for all j ∈ W, jµ 6= jµr .

Then, when we reach worker jr following order θ, the max-min vector procedure only
considers the core constraints with variables from P θ

jr ∪ {jr} and determines a payoff
(salary) for jr that satisfies (in a tight way) either one lower core bound or one upper
core bound, depending on whether the extended order θ̃ determines jr is a maximizer or
a minimizer. Since all yj values for j ∈ P θ

jr have already been set, finding yjr amounts to
the elementary optimization problems given in the above definition. It is not surprising
that a max-min salary vector may not be in C(W ), since one half of the core constraints
are not checked during the procedure that builds such vector. However, we show next
that if a max-min salary vector is competitive, then it is an extreme competitive vector.
This same property (the fact that when they are in the core, they are extreme core
points) is satisfied by the marginal worth vectors in arbitrary coalitional games and by
the max-payoffs vectors in one-to-one assignment games, which are also collections of
vectors that are defined for each possible order on a player set.

Proposition 14. Let γ = (F,W,A, r) be a capacity-balanced many-to-one assignment

market, µ an optimal matching, θ an order on W and θ̃ an extension of θ. If yθ̃ ∈ C(W ),

then yθ̃ ∈ Ext(C(W )).

Proof. Let yθ̃ ∈ C(W ). By definition of the max-min vectors, at each step of the

procedure one core constraint is tight at yθ̃. Moreover, these equations are linearly
independent since each of them involves a new worker whose salary does not take part in
the previous equations. Since the membership in C(W ) is guaranteed by the assumption,

the fact that n linearly independent constraints are tight at yθ̃ implies that this is an
extreme point of C(W ).

Now the question is whether all extreme points of C(W ) in a many-to-one assignment
market are of this type, that is, all are max-min salary vectors related to some extended
order on the set of workers. Let us consider again the market of Example 3.

Example 15. Consider again the many-to-one assignment market γ = (F,W,A, r) with
set of firms F = {f1, f2} with capacities r = (2, 1), set of workers W = {w1, w2, w3}
with unitary capacity and pairwise valuation matrix

A =

(w1 w2 w3

f1 8 6 3
f2 7 6 4

)
.

We can obtain the extreme core points from the picture of the salary-core in Figure 1
and then check that all core vertices are supported by max-min salary vectors. Another
approach is to compute for each of the 3! · 23 = 48 extended orders the associated max-
min salary vectors and check their core membership. The result of this tedious but
computationally straightforward excercise is given in Appendix B. It shows that all 9
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extreme core vectors in this market are supported by max-min salary vectors, they are
obtained from 28 extended orders, while the remaining 20 extended orders determine
max-min salary vectors outside the core.

In the following table we indicate for each core vertex all extended orders such that
the related max-min salary vector supports that vertex.

x1 x2 y1 y2 y3 extended order

0 0 8 6 4 (1, 2, 3) in any permutation, (1, 3, 2), (3, 1, 2), (3, 2, 1)

0 1 8 6 3 (1, 2, 3), (2, 1, 3), (1, 3, 2), (2, 3, 1)

1 1 8 5 3 (1, 3, 2)

1 0 7 6 4 (2, 3, 1), (3, 2, 1), (3, 1, 2), (3, 1, 2), (3, 2, 1)

2 1 6 6 3 (2, 3, 1)

9 4 3 2 0 (3, 2, 1), (3, 1, 2)

7 4 5 2 0 (3, 2, 1), (3, 1, 2)

6 4 5 3 0 (3, 2, 1), (3, 1, 2)

8 4 3 3 0 (3, 2, 1), (3, 1, 2)

Characterization (A) in Theorem 11 offers explanations not just for the various mul-
tiplicity a given extreme core vector appears as max-min salary vector, but, more im-
portantly, why the full enumeration of min-max salary vectors will always provide all
extreme core vectors (see Theorem 16 below).

Take for instance extreme competitive salary vector (7, 6, 4) and consider its tight
graph drawn in Example 10. It has 4 arcs on 4 nodes, so its connected base-graph admits
multiple spanning trees. We see that any of these spanning trees contains arc (3, 1) and
two of the other three arcs (which form a cycle). For instance, the spanning tree with
arcs (2, 0), (3, 2), (3, 1) allows only the order (2, 3, 1) and make arcs (2, 0) and (3, 2)
backward arcs and arc (3, 1) a forward arc. If, starting from node 0, we reach a node
with a backward (resp. forward) arc, we set to maximize (resp. minimize) the payoff for
that worker. Thus, in this case we get the extended order (2, 3, 1). The related max-min
salary vector is computed as follows:

y2 = a12 = 6,
y3 = min{y2 − a22 + a23, a23} = min{4, 4} = 4,
y1 = max{y3 − a23 + a21, 0} = max{7, 0} = 7.

On the other hand, the spanning tree with backward arc (3, 0) and forward arcs (3, 2),
(3, 1) allows two extended orders compatible with the partial order induced by this
0-rooted spanning tree, namely (3, 2, 1) and (3, 1, 2).

This example also shows that not all max-min salary vectors belong to the core, and
hence they may not lead to an extreme core allocation. Take for instance the extended
order θ̃ = (1, 2, 3). Then,

y1 = 0,
y2 = a12 = 6,
y3 = max{y1 − a11 + a13, y2 − a12 + a13, 0} = max{−5, 3, 0} = 3.
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The related max-min salary vector is yθ̃ = (0, 6, 3) and it does not lead to a core payoff
since the constraint y3 − y1 ≤ a23 − a21, which were ignored when y3 were minimized, is
not satisfied.

Next theorem shows that although a max-min salary vector may not be an extreme
core allocation, the converse inclusion always holds. As the example above illustrates,
every extreme core point is supported by a max-min salary vector related to one extended
order, or maybe to several of them.

Theorem 16. Let γ = (F,W,A, r) be a capacity-balanced many-to-one assignment mar-
ket and µ an optimal matching. Then,

Ext(C(W )) ⊆ {yθ̃}θ̃∈Σ̃W
.

Proof. Let y ∈ Ext(C(W )) and consider the related tight digraph (W0, E
y). From

Theorem 11 (A), the base-graph is connected, hence there exists j1 ∈ W such that at
least one of (0, j1) ∈ Ey, meaning yj1 = 0, or (j1, 0) ∈ Ey, meaning yj1 = ajµ

1
j1 , holds. If

both relations hold, we pick one of them. In the first case define θ̃(1) = θ(1) = j1 and

in the second case θ̃(1) = θ(1) = j1. Notice that in both cases yθ̃j1 = yj1.

For 1 < r ≤ n − 1, assume by induction hypothesis that there exists θ̃ ∈ Σ̃W with
θ̃(k) = jk for all 1 ≤ k ≤ r such that yθ̃θ(k) = yθ̃jk = yjk , and show this also holds for
r + 1.

Case 1: There exists some j ∈ W \ {j1, j2, . . . , jr} and some jk ∈ {j1, j2, . . . , jr} such
that (jk, j) ∈ Ey.

In this case, yj − yjk = ajµ
k
j − ajµ

k
jk , which implies yj = yjk + ajµ

k
j − ajµ

k
jk . Then,

set θ̃(r + 1) = θ(r + 1) = j, that is, jr+1 = j, and notice that, since y is a vector of
competitive salaries, the inequalities yj ≥ 0 and yj ≥ yjh + ajµ

h
j − ajµ

h
jh hold for all

jh ∈ {j1, . . . , jr} with jµh 6= jµ. This guarantees that yjr+1
= yθ̃jr+1

.

Case 2: There exists some j ∈ W \ {j1, j2, . . . , jr} and some jk ∈ {j1, j2, . . . , jr} such
that (j, jk) ∈ Ey.

In this case, yj − yjk = ajµj − ajµjk , which implies yj = yjk + ajµj − ajµjk . Then,
set θ̃(r + 1) = θ(r + 1) = j, that is, jr+1 = j, and notice that, since y is a vector
of competitive salaries , the inequalities yj ≤ ajµj and yj ≤ yjh + ajµj − ajµjh, for all

jh ∈ {j1, . . . , jr} with jµh 6= jµ, hold. This shows that yjr+1
= yθ̃jr+1

.

By connectedness of the base-graph at least one of the above two cases holds, if both
hold, we pick one of them, and continue building the spanning tree till all nodes in W
are reached. An extended order is constructed such that the associated min-max vector
coincides with the extreme core vector y, and our inductive proof ends.

A consequence of the above theorem is that each extreme core point of a many-
to-one assignment game is the result of a (computationally very simple) lexicographic
optimization procedure carried out by the workers over the core. This somehow resem-
bles the one-to-one assignment game, where each extreme core point can be obtained
from a lexicographic maximization or also from a lexicographic minimization over the
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core. But, in both cases, all agents, firms and workers, take part in the optimization
procedure.

In particular, given a market (F,W,A, r), if we take any order θ on W and consider

the extended order θ̃ = (θ(1), θ(2), . . . , θ(n)), the related max-min salary vector yθ̃

satisfies yθ̃θ(k) ≤ yθ(k) for all (x, y) ∈ C(vγ). This is because each worker’s payoff at

yθ̃ tightly satisfies some lower core bound, given the payoff of his/her predecessors.

As a consequence, whenever yθ̃ belongs to the core, it is the worst core allocation for
workers, and hence the vector of minimum competitive salaries, that supports the firm-
optimal core allocation. Similarly, the worker-optimal core allocation follows from some
yθ̃ where θ̃ = (θ(1), θ(2), . . . , θ(n)). In the next section we discuss a special class of
many-to-one assignment markets, where the max-min vector for both the all-min and
the all-max extended orders always belong to the core, and can be directly obtained
from the matrix without any computation.

8 Dominant diagonal markets

A natural question arises after Corollary 12: for which many-to-one markets all workers
attain a zero competitive salary and for which markets all workers j attain ajµj as
a competitive salary? To this end we generalize the known condition for one-to-one
assignment games due to Solymosi and Raghavan (2001).

Definition 17. A capacity-balanced many-to-one assignment market (F,W,A, r) has a
dominant diagonal if and only if there exists an optimal matching µ such that

1.
∑

j∈µ(i) aij ≥
∑

j∈T aij for all T ⊆ W with |T | ≤ ri, and

2. ajµj ≥ aij for all j ∈ W and i ∈ F .

Notice that when each worker j ∈ W attains ajµj as a competitive salary, then all
firms have a zero payoff. The above property characterizes those many-to-one markets
where each agent attains a zero payoff in the core.

Proposition 18. A capacity-balanced many-to-one assignment market (F,W,A, r) has
a dominant diagonal if and only if every agent attains a zero payoff in the core.

Proof. Take an optimal matching µ. If there is a core allocation where all workers j ∈ W
get salaries yj = 0, then, each firm i ∈ F gets xi =

∑
j∈µ(i) aij. Now, such a payoff vector

belongs to the core if and only if the core constraints for essential coalitions are satisfied,
which means that for all i ∈ F ,

∑
j∈µ(i) aij + 0 ≥

∑
j∈T aij for all T ⊆ W with |T | ≤ ri.

Similarly, when all firms get zero in a core allocation, then each worker gets the
salary yj = ajµj . This allocation belongs to the core if and only if for all i ∈ F ,
0 +

∑
j∈T ajµj ≥

∑
j∈T aij, for all T ⊆ W with |T | ≤ ri. This is equivalent to ajµj ≥ aij

for all j ∈ W and all i ∈ F .

Notice that the market of Example 3 satisfies condition (2) of Definition 17, but it
does not satisfy condition (1), since for instance

∑
j∈µ(2) aij = a23 + a20 < a21 + a22.
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This is the reason why we observe in Figure 1 there is no core element where all workers
receive zero salary.

It is important to remark that, since the above proposition shows that the dominant
diagonal property is equivalent to a property of the core, which does not depend on
the optimal matching we select for its representation, the diagonal dominant property
is also independent of the optimal matching.

Let us also point out, without entering into formal details, that, as in the one-to-one
assignment game, the dominant diagonal property is a necessary condition for the (von
Neumann-Morgenstern) stability of the core. Indeed, if the point (x, y), where xi = 0
for all i ∈ F and yj = ajµj for all j ∈ W , is not in the core, then it cannot be dominated
by any core allocation, which implies the core is not a stable set. The same happens if
the point (x, y), with xi =

∑
j∈µ(i) aij for all i ∈ F and yj = 0 for all j ∈ W , does not

belong to the core.
On the other hand, in contrast to the one-to-one assignment game, the dominant

diagonal property is not sufficient for stability of the core in the many-to-one assignment
game. Consider the following example.

Example 19. Let the market γ = (F,W,B, r) be given by the pairwise valuation matrix

B =

(w1 w2 w3

f1 6 4 1
f2 5 4 5

)
,

and firm-capacity vector r = (2, 1). In this capacity-balanced market, under the
unique optimal matching µ, workers w1 and w2 are matched with firm f1, and w3 with
f2. The market is clearly dominant diagonal, thus the firm-optimal core allocation is
(10, 5; 0, 0, 0) and the worker-optimal core allocation is (0, 0; 6, 4, 5).

Take imputation (x; y) = (0, 5; 6, 4, 0). It satisfies the efficiency conditions x1 + y1 +
y2 = 10 and x2 + y3 = 5, but it is not in the core because x1 + y3 = 0 < 1 = vγ(f1, w3).
We claim that no core allocation dominates this imputation. Recall the general facts
that (i) if an imputation dominates another imputation, then the first dominates the
second via an essential coalition; and (ii) if a core allocation dominates an imputation,
then it should be on the boundary of the core.

Notice that imputation (x; y) = (0, 5; 6, 4, 0) can only be dominated via {f1, w3},
{f1, w1, w3}, or {f1, w2, w3} among the essential coalitions. However, a core allocation
could dominate (x; y) only via {f1, w3}, because the payoff of both w1 and w2 are at
their core maximums y1 = 6 and y2 = 4. Suppose core allocation (x′; y′) dominates
imputation (x; y) via {f1, w3}. Then it should be of the form (x′

1 = ε, x′
2 = 4 + ε; y′1 =

6− ε1, y
′
2 = 4− ε2, y

′
3 = 1− ε) where 0 < ε < 1, 0 ≤ ε1, ε2 and ε1+ ε2 = ε. Consider the

core inequalities related to {f1, w1, w3} and {f1, w2, w3},
(x′

1 = ε) + (y′1 = 6− ε1) + (y′3 = 1− ε) = 7− ε1 ≥ 7,
(x′

1 = ε) + (y′2 = 4− ε2) + (y′3 = 1− ε) = 5− ε2 ≥ 5.
Obviously, at least one of them is violated, because at least one of ε1 > 0 or ε2 > 0
holds. We conclude that imputation (x; y) = (0, 5; 6, 4, 0) can not be dominated by a
core allocation in this dominant diagonal many-to-one assignment game.
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Therefore, a characterization of core stability in terms of matrix properties requires
further research. Convexity of the game is a well-known sufficient condition. The reader
can easily show that this game property has the following matrix characterization.

Proposition 20. A many-to-one assignment game is convex if and only if no row or
column of the underlying matrix contains more positive entries than the capacity of the
corresponding agent.

In contrast to the general case, in dominant diagonal many-to-one assignment games
the tau-value is a core element, in fact, as in one-to-one assignment games, it is the
midpoint of the line segment joining the two side-optimal core allocations.

Proposition 21. Let (F,W,A, r) be a capacity-balanced many-to-one assignment mar-
ket with dominant diagonal optimal matching µ. Then

1. the payoff vector (xf ; yf) given by xf
i =

∑
j∈µ(i) aij for all i ∈ F , yfj = 0 for all

j ∈ W , is a core allocation, (the firm-optimal core allocation, where all firms get
their marginal payoff to the grand coalition);

2. the payoff vector (xw; yw) given by xw
i = 0 for all i ∈ F , ywj = ajµj for all j ∈ W , is

a core allocation, (the worker-optimal core allocation, where all workers get their
marginal payoff to the grand coalition);

3. the tau-value is a core allocation, the average of the two side-optimal core alloca-
tions, τ(vγ) = (xf/2; yw/2) ∈ C(wγ).

Proof. The first claim follows from the fact that if the optimal matching µ is dominant
diagonal, then under µ any firm i ∈ F is matched with her most profitable ri workers,
that is minj∈µ(i) aij ≥ maxk∈W\µ(i) aik. The second claim comes analogously, under µ
any worker j ∈ W is matched with his most profitable firm, that is ajµj ≥ maxi∈F aij.

It follows from the first two statements that the upper vector is (xf ; yw). It is easily
seen that the lower vector is (xw = 0; yf = 0). Since xf (F ) + yw(W ) = 2vγ(F ∪W ), the
efficiency scalar is κ = 1/2. Therefore, the tau-value is τ(wA) =

1
2
(xf ; yw) + 1

2
(xw; yf) =

1
2
(xf ; yf) + 1

2
(xw; yw) = (xf/2; yw/2). By convexity of the core, τ(vγ) ∈ C(vγ).

Although in dominant diagonal many-to-one assignment games for all players their
marginal contributions to the grand coalition are attained in the core, in fact simul-
taneously for both sides, it is not true that all extreme core allocations are marginal
vectors. Consider Example 19, and take payoff vector (5, 4; 1, 4, 1), where no player
receives 0 payoff. It is easily checked that it is an extreme core allocation. Since the
game is 0-normalized, for each order of the players the first player in the correspond-
ing marginal vector gets 0 payoff. Thus, the given extreme core allocation cannot be
a marginal vector. It remains for future research to find out whether there is a larger
subclass of many-to-one assignment games than the one-to-one assignment games where
the COMA-property (Hamers et al., 2002) holds.
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9 Kaneko’s many-to-one buyer-seller market

The first many-to-one assignment game in the literature appears in (Kaneko, 1976), as
a market between buyers and sellers where each buyer demands only one unit while
each seller may have several units on sale, even from different types. If we assume for
simplicity that the goods owned by a seller are of the same type, Kaneko’s many-to-one
assignment game is analogous to our job market assignment game from the perspective
of the core and the theory of coalitional games.

Let B and S be the finite and disjoint sets of buyers and sellers respectively, A =
(aij)(i,j)∈B×S the pairwise valuation matrix and r = (rj)j∈S the capacities of the sellers.
Assume the market is capacity-balanced, that is

∑
j∈S rj = |B|. By projecting the core

of this game to the payoffs of the buyers (which is now the side with unitary capacity
agents) analogously to Proposition 2 we obtain that (x, y) ∈ R

B × R
S is in the core

of the associated game C(vγ), where γ = (B, S,A, r), if and only if, for any optimal
matching µ,

(i) 0 ≤ xi ≤ aiµ(i) for any i ∈ B;

(ii) xk − xi ≥ akµ(i) − aiµ(i) for any i, k ∈ B such that µ(k) 6= µ(i);

(iii) yj =
∑
i∈jµ

(aij − xi) for all j ∈ S.

From this description of the core of Kaneko’s assignment market, that we may call
the buyers core C(B), it follows the possibility of defining the tight digraph associated
with each core element. Now this graph at x ∈ C(B) will have set of nodes B and
directed arcs related to those core inequalities that are tight at x, in a way analogous
to Definition 9. As a consequence, we obtain a characterization of the extreme core
allocations by means of the connectedness of its base-digraph, and characterizations of
the buyers-optimal core element and the sellers-optimal core element parallel to those
in Theorem 11: x ∈ C(B) is the minimum core payoff vector for buyers if and only if its
tight digraph contains a 0-sourced directed spanning tree, and it is the maximum core
payoff vector for buyers if its tight digraph contains a 0-sinked directed spanning tree.

Also, a set of max-min payoff vectors {xθ̃}θ̃∈Σ̃ can be defined, one for each extended
order on the set of buyers, and each extreme element of C(B) is proved to be of this
type, in a result parallel to Theorem 16.

However, regarding the set of competitive equilibrium payoff vectors, the two models
clearly differ. Kaneko (1976) already shows by means of an example that although every
competitive equilibrium payoff vector is in the core, not all core elements are supported
by competitive prices. This is quite straightforward since in the above core description,
two units from the same seller j ∈ S that are sold to two different buyers i, k ∈ B
may have different price: aij − xi and akj − xk. It is easy to see that the subset of core
elements where the units of each seller are sold at the same price is the set of competitive
equilibria payoff vectors.

Proposition 22. Let γ = (B, S,A, r) be a capacity-balanced many-to-one assignment
market where buyers have unitary capacity and µ an optimal matching. Then, (x, y) ∈
R

B × R
S is a competitive equilibrium payoff vector if and only if
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(i) 0 ≤ xi ≤ aiµ(i) for any i ∈ B;

(ii) xk − xi ≥ akµ(i) − aiµ(i) for any i, k ∈ B;

(iii) yj =
∑
i∈jµ

(aij − xi) for all j ∈ S.

Notice that the difference with the core, and with the CE equilibrium payoffs of
our initial many-to-one job market, lies in the fact that inequality (ii) is required for
each pair of buyers, not just for those that are not optimally matched to the same
seller. This implies that if i, k ∈ B are such that µ(i) = µ(k) = j, then (ii) gives
xk − xi = akµ(k) − aiµ(i) which means that both units are sold at the same price: pj =
akµ(k) − xk = aiµ(i) − xi.

Example 23. Consider the market γ = (B, S,A, r) where the set of buyers is B =
{b1, b2, b3}, the set of sellers is S = {s1, s2}, the capacities of the sellers are r = (2, 1)
and the valuation matrix is

A =




s1 s2
b1 8 7
b2 6 6
b3 3 4


.

There is only one optimal matching µ = {(b1, s1), (b2, s1), (b3, s3)} and the core of this
market consists of the set of payoff vectors (x, y) ∈ R

3 × R
2 such that

0 ≤ x1 ≤ 8 3 ≤ x1 − x3 ≤ 5 y1 = (8− x1) + (6− x2)
0 ≤ x2 ≤ 6 2 ≤ x2 − x3 ≤ 3 y2 = 4− x3

0 ≤ x3 ≤ 4
(8)

Notice that the valuation matrix is the transposed of Example 3, and the capacities
of sellers coincide with those of firms in that initial example. As a consequence notice
that C(B) coincides with C(W ) there. Hence, in our buyer-seller market, (x, y) =
(8, 6, 4; 0, 0) is the best core allocation for buyers while (x, y) = (3, 2, 0; 9, 4) is the
best core allocation for sellers. However, in (x, y), s1 sells one unit to b1 at the price
p1b1 = a11 − x1 = 5 and sells a second unit to b2 at the price p1b2 = a21 − x2 = 4, which
means that (3, 2, 0; 9, 4) is not supported by a competitive equilibrium.

To obtain the set of CE payoff vectors of this example, CE(B), we only need to add
to the set of inequalities (8) the fact that the two units of s1 are sold at the same price,
8−x1 = 6−x2, that is x1−x2 = 2. By representing CE(B), it is easy to check that it is
the polytope spanned by the following four extreme vectors: (4, 2, 0), (5, 3, 0), (8, 6, 3),
and (8, 6, 4). Then, the minimum CE payoff vector for the buyers is (4, 2, 0), related to
the CE prices p1 = p2 = 4.

Notice that the maximum payoff of the buyers in the core, (8, 6, 4) satisfies the
additional equation x1 − x2 = 2 and hence it is supported by a competitive equilibrium
and it is also the maximum CE payoff for buyers related with the minimum CE prices
that are p1 = p2 = 0.

We can provide a sufficient condition in terms of the pairwise valuation matrix that
guarantees that all core allocations are supported by competitive prices.
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Proposition 24. Let (B, S,A, r) be a capacity-balanced many-to-one assignment market
where buyers have unitary capacity, and µ an optimal matching. Then C(B) = CE(B)
if for all j, j′ ∈ S and i, k, i′ ∈ B such that µ(i) = µ(k) = j and µ(i′) = j′ 6= j it holds

akj′ + ai′j ≥ akj + ai′j′, (9)

aij′ + ai′j ≥ aij + ai′j′, (10)

Proof. Take x ∈ C(B). From the core constraints, together with (9) and (10), we get

xk − xi = (xk − xi′) + (xi′ − xi) ≥ akj′ − ai′j′ + ai′j − aij ≥ akj − aij, and

xi − xk = (xi − xi′) + (xi′ − xk) ≥ aij′ − ai′j′ + ai′j − akj ≥ aij − akj,

which proves that xk − xi = akj − aij.

Our previous characterization (Theorem 11) of the extreme competitive salaries of
the multiple-partners job market can be straightforwardly extended to the extreme
competitive buyers’ payoffs of Kaneko’s buyer-seller market, simply defining the tight
digraph of a CE payoff vector using all the inequalities in Proposition 22. Take, for
instance, the extended tight digraph of the minimum CE payoff vector for buyers in
Example 23 (see Figure 4) and notice that it has a unique source.

0

1

2

3

Figure 4: Extended tight digraph of the minimum CE payoff vector (4,2,0).

Similarly, the definition of the max-min vectors in Definition 13 can be modified
by the omission of the condition jµ 6= jµr . Then, a result analogous to Theorem 16
guarantees that each extreme point of CE(B) coincides with one of these max-min
vectors.

10 Concluding remarks

The core of many-to-one assingment markets had been studied to some extent, but little
was known about its structure. In this paper, we have expanded the known results on
(dis)similarities between the one-to-one case and the many-to-one case (and hence the
many-to-many case). First, we have studied the relationship between the core and other
solution concepts. We have shown the kernel may not be included in the core, and
remarkably, the coincidence between the core and the bargaining set does not hold. Our
Example 4 represents a phenomenon that also happens in one-to-one markets: the short
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side of the market gets all the profit in any core allocation, without taking into account
that the cooperation of the agents on the large side is needed to attain this profit. In
the many-to-one markets, this situation may be solved by considering the kernel or
the bargaining set to look for more fair distributions of the value of the market. In
particular, in our example, the Shapley value is one of these kernel distributions that
lie outside the core.

Secondly, the described procedure of the max-min salary vectors provides all extreme
core allocations. Since all orders on the set of workers must be considered, this is not
a very efficient procedure. Nevertheless, compared to the well-studied maximum and
minimum competitive salary vectors, it allows to find other combinations of competitive
salaries where the payoff of some workers is maximized while for others it is minimized,
everything according to a given order of priority.

Let us finally point out that the negative results that have been presented, such
as the non coincidence between core and bargaining set, or that not all extreme core
points are lemaral vectors, trivially apply also to the class of many-to-many assignment
markets.

A Appendix

This example shows that, for many-to-one assignment markets, neither all lemaral vec-
tors are extreme core allocations nor all extreme core points can be obtained as lemaral
vectors for some given order on the agents. Consider the market γ = (F,W,A, r) where
F = {f1, f2}, W = {w1, w2} are the set of firms and the set of workers respectively, and
the capacities of the firms are r = (2, 1). The per-unit pairwise valuations are given in
the following matrix:

A =

(w1 w2

f1 4 3
f2 3 2

)
.
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The corresponding many-to-one assignment game (N, vγ) and its dual game are:

v x1 x2 y1 y2 v∗

0 1 . . . 4
0 . 1 . . 0
0 . . 1 . 4
0 . . . 1 3
0 1 1 . . 7
4 1 . 1 . 5
3 1 . . 1 4
3 . 1 1 . 4
2 . 1 . 1 3
0 . . 1 1 7
4 1 1 1 . 7
3 1 1 . 1 7
7 1 . 1 1 7
3 . 1 1 1 7
7 1 1 1 1 7

The marginal payoff of firm f1 is 4 = v∗(f1) = v(N)−v(N \f1) but it is not achievable in
the core since the core-maximum for firm f1 is maxC x1 = 2 = v∗({f2})+ v∗({f1, w1})+
v∗({f1, w2}) − v∗(N). This shows that the marginal payoff of a player to the grand
coalition may not be the core maximum payoff of the corresponding player for the
many-to-one assignment game.

Now, take any order that starts with the firm f1, σ = (f1, arbitrary). For that given
order, the payoff of f1 is 4 which cannot be attained at a core allocation. Hence, a
lemaral obtained by an order σ = (f1, arbitrary) cannot be a core allocation.

Next, take the extreme core allocation (2, 0; 3, 2). Notice that minC y2 = 2 =
v({f2, w2}) + v({f1, w1, w2}) − v(N) and both f1 and f2 obtain their core maximum
allocations, and hence (2, 0; 3, 2) is an extreme core allocation. We will try to construct
a lemaral vector (x, y) ∈ R

N that coincide with the aforementioned extreme core allo-
cation. First notice that f2 is the only player that is paid her marginal payoff. Hence,
we only take into account orders that start with player f2:

• Player 2 achieves her marginal payoff under an order σ = (f2, arbitrary): x2 = 0,

• σ = (f2, f1, . . .): Then,

x1 = min{v∗(f1), v
∗({f1, f2})− x2} = min{4, 7− 0} = 4 6= 2 = x1,

• σ = (f2, w1, . . .): Then,

y1 = min{4, 4− 0} = 4 6= 3 = y1,

• σ = (f2, w2, . . .): Then,

y2 = min{3, 3− 0} = 3 6= 2 = y2.

As a consequence, there does not exist an order to construct a lemaral vector that
coincides with the extreme core allocation (2, 0; 3, 2).
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B Appendix

All max-min salary vectors in the market from Example 15:

ext. order y1 y2 y3 in core?

(1, 2, 3) 0 0 0 −

(1, 2, 3) 0 0 −3 −

(1, 2, 3) 0 6 3 −

(1, 2, 3) 0 6 −3 −

(1, 2, 3) 8 0 3 −

(1, 2, 3) 8 0 −2 −

(1, 2, 3) 8 6 3 +

(1, 2, 3) 8 6 4 +

ext. order y1 y2 y3 in core?

(1, 3, 2) 0 2 0 −

(1, 3, 2) 0 3 0 −

(1, 3, 2) 0 5 −3 −

(1, 3, 2) 0 6 −3 −

(1, 3, 2) 8 5 3 +

(1, 3, 2) 8 6 3 +

(1, 3, 2) 8 6 4 +

(1, 3, 2) 8 6 4 +

ext. order y1 y2 y3 in core?

(2, 1, 3) 0 0 0 −

(2, 1, 3) 0 0 −3 −

(2, 1, 3) 8 0 3 −

(2, 1, 3) 8 0 −2 −

(2, 1, 3) 0 6 3 −

(2, 1, 3) 0 6 4 −

(2, 1, 3) 8 6 3 +

(2, 1, 3) 8 6 4 +

ext. order y1 y2 y3 in core?

(2, 3, 1) 3 0 0 −

(2, 3, 1) 5 0 0 −

(2, 3, 1) 1 0 −2 −

(2, 3, 1) 3 0 −2 −

(2, 3, 1) 6 6 3 +

(2, 3, 1) 8 6 3 +

(2, 3, 1) 7 6 4 +

(2, 3, 1) 8 6 4 +

ext. order y1 y2 y3 in core?

(3, 1, 2) 3 2 0 +

(3, 1, 2) 3 3 0 +

(3, 1, 2) 5 2 0 +

(3, 1, 2) 5 3 0 +

(3, 1, 2) 7 6 4 +

(3, 1, 2) 7 6 4 +

(3, 1, 2) 8 6 4 +

(3, 1, 2) 8 6 4 +

ext. order y1 y2 y3 in core?

(3, 2, 1) 3 2 0 +

(3, 2, 1) 5 2 0 +

(3, 2, 1) 3 3 0 +

(3, 2, 1) 5 3 0 +

(3, 2, 1) 7 6 4 +

(3, 2, 1) 8 6 4 +

(3, 2, 1) 7 6 4 +

(3, 2, 1) 8 6 4 +

Notice that since workers 1 and 2 are optimally matched to the same firm, thus the
difference between their core payoffs is not constrained, whenever they occupy consec-
utive positions in an extended order the associated max-min vector is the same. Based
on this observation, the full enumeration process can be somewhat shortened.

34



References

Atay, A. and T. Solymosi (2018), “On bargaining sets of supplier-firm-buyer games.”
Economics Letters, 167, 99–103.

Bahel, E. (2016), “On the core and bargaining set of a veto game.” International Journal
of Game Theory, 45, 543–566.

Bahel, E. (2021), “Hyperadditive games and applications to networks or matching prob-
lems.” Journal of Economic Theory, 191, 105168.
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