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Abstract

We introduce the horizon-k vNM stable set to study one-to-one priority-

based matching problems with limited farsightedness. We show that, once

agents are sufficiently farsighted, the matching obtained from the Top Trad-

ing Cycles (TTC) algorithm becomes stable: a singleton set consisting of the

TTC matching is a horizon-k vNM stable set if the degree of farsightedness is

greater than three times the number of agents in the largest cycle of the TTC.

Our main results do not hold per se for many-to-one priority-based matching

problems: more coordination and cooperation on behalf of the agents is re-

quired. In the presence of couples, farsightedness may improve both efficiency

and stability. When each agent owns an object, a singleton set consisting of

the TTC matching is the unique horizon-k vNM stable set.
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1 Introduction

Many objects such as houses, school seats, jobs or organs are allocated based on

the preferences of the agents and their priorities.1 Two prominent mechanisms used

for priority-based matching are the Gale and Shapley’s (1962) Deferred Acceptance

(DA) mechanism and the Shapley and Scarf’s (1974) Top Trading Cycles (TTC)

mechanism, applied across the globe in different forms, such as public school choice,

subsidized housing assignment, and cadaver organ allocation.2 But none of them

satisfies two important properties: the TTC mechanism is Pareto efficient while the

DA mechanism may select an inefficient matching; the DA mechanism is stable while

the TTC mechanism may select an unstable matching.3

Two approaches for analysing the stability of matchings have been proposed in

the literature depending on whether and how far agents anticipate that their actions

may also induce others to change their matches. On the one hand, standard stability

concepts involves fully myopic agents in the sense that they do not anticipate that

others might react to their actions. On the other hand, a number of solution concepts

involve perfectly farsighted agents who fully anticipate the complete sequence of

reactions that results from their own actions.

However, experimental evidence suggests that subjects are consistent with an

intermediate degree of farsightedness: agents only anticipate a limited number of

reactions by the other agents to the actions they take themselves. Moreover, recent

experiments on network formation provide evidence in favour of a mixed population

consisting of both myopic and (limited) farsighted individuals.4 Farsighted behavior

on one side of the market is observed in several priority-based matching problems.

Public school teachers in France can apply every year to be transferred to another

1Roth and Sotomayor (1990) and Haeringer (2017) provide a general introduction to matching

problems.
2Abdulkadirog̃lu and Sönmez (2003) show that both mechanisms are strategy-proof: truthful

preference revelation is a weakly dominant strategy for the agents. Dubins and Freedman (1981)

and Roth (1982) were first to show that the DA mechanism satisfies strategy-proofness in one-to-

one matching problems.
3Kesten (2010) introduces the Efficiency-Adjusted Deferred Acceptance (EADA) mechanism

to improve efficiency upon the DA mechanism. Reny (2022) provides the Priority-Efficient (PE)

mechanism that always selects a Pareto efficient matching that dominates the DA stable matching,

but the PE mechanism is not strategy-proof.
4See e.g. Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2016), Teteryatnikova and

Tremewan (2020).
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school. The transfer is done through a centralized mechanism where teachers report

a list of preferences over schools and priority rules determine who gets what. Pri-

orities are based on a score with criteria set by law that vary over time depending

on seniority but also, for instance, if a teacher has taught five years in a disadvan-

taged school. In this case, when a teacher must decide to apply to transfer from one

school to another during her career, she takes into account how such decision and

her former experience will impact her future score, and thus her chances for later

transfers (see Combe, Tercieux and Terrier, 2022). A patient in need of a kidney

faces several options for treatment. One can wait to receive an offer of a deceased

donor transplant, or one can rely on a compatible or incompatible living donor and

join a Kidney Exchange Program to exchange her donor for a more compatible

donor from another incompatible pair. The procedure for allocating deceased donor

kidneys prioritizes certain types of patients, such as young or hyper-sensitized ones.

The availability of a compatible or incompatible living donor impacts the decision

of a patient on whether to accept a deceased donor kidney offer and her score in the

priority list (see Ashlagi and Roth, 2021).

Existing literature that examines the trade-off between stability and efficiency

tends to adopt a myopic perspective. In one-to-one priority-based matching prob-

lems, is it possible to stabilize the matching obtained from the DA or TTC algorithm

when agents are limited farsighted? If so, to what extent do agents need to be far-

sighted? What happens if there could be multiple units/copies of each object or if

agents either form couples or own the objects?

To answer these questions we introduce the notion of horizon-k vNM stable set

to study the matchings that are stable when agents are limited in their degree of

farsightedness.5 A horizon-k improving path for priority-based matching problems

is a sequence of matchings that can emerge when limited farsighted agents form or

destroy matches based on the improvement the k-step ahead matching offers them

relative to the current matching. Along a horizon-k improving path, one agent move

at a time and an agent can match to an object if either the object is unassigned

5See Chwe (1994), Page and Wooders (2005), Mauleon, Vannetelbosch and Vergote (2011), Ray

and Vohra (2015, 2019), Herings, Mauleon and Vannetelbosch (2019, 2020), Luo, Mauleon and Van-

netelbosch (2021) for definitions of the farsighted stable set. Alternative notions of farsightedness

are proposed by Page, Wooders and Kamat (2005) and Grandjean, Mauleon and Vannetelbosch

(2011) among others.
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or she has higher priority than the agent who was assigned to the object so far.6

A set of matchings is a horizon-k vNM stable set if (Internal Stability) for any

two matchings belonging to the set, there is no horizon-k improving path from one

matching to the other one, and (External Stability) there always exists a horizon-k

improving path from every matching outside the set to some matching within the

set.

We show that, once agents are sufficiently farsighted, the matching obtained from

the TTC algorithm becomes stable in one-to-one priority-based matching problems.

Precisely, a singleton set consisting of the TTC matching is a horizon-k vNM stable

set if the degree of farsightedness is greater than three times the number of agents

in the largest cycle of the TTC. We provide a constructive proof where we build

step by step a horizon-k improving path from any matching leading to the TTC

matching. Along the horizon-k improving path, agents move one at a time and

agents belonging to cycles sequentially act in the order of the formation of cycles in

the TTC algorithm. Looking forward k steps ahead, agents belonging to a cycle first

match one by one to the object that ranks them first on their priority list. Second,

they give up one by one their object, and by doing so, vacating the object. Third,

they match one by one to the object they are assigned to in the TTC matching. The

number of steps in this improving path is at most equal to three times the number

of agents in the largest cycle of the TTC. Hence, looking forward such a number

of steps ahead allows the agents to anticipate ending up with their TTC matches;

and by doing so, they have incentives for engaging a move towards the matches they

have in the TTC matching. Thus, the matching obtained from the TTC algorithm

is not only Pareto efficient and strategy-proof, it is also horizon-k vNM stable. On

the contrary, the matching obtained from the DA algorithm may not belong to any

horizon-k vNM stable set for k large enough.

Our main results are robust to an alternative concept for limited farsightedness,

which is obtained by adapting Herings, Mauleon and Vannetelbosch (2019) definition

of a horizon-L farsighted set of networks to priority-based matching problems. This

concept mainly replaces the internal stability condition of the horizon-k vNM stable

set by two alternative conditions: deterrence of external deviations and minimality.

We next show that, once agents become farsighted, one has to distinguish be-

6In some sense, agents behave strategically by anticipating further moves while objects behave

mechanically by accepting or rejecting agents based on their priority lists.
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tween priority-based matching problems with multiple units of each object or mul-

tiple copies of each object. An object is said to be a copy of another object if both

objects have the same priority list over the agents and all agents are indifferent be-

tween both objects. Our main results basically hold with multiple copies. However,

in the presence of multiple units of each object, more coordination and cooperation

on behalf of the agents is required: one need to allow group of agents to move all

together to sustain the TTC matching as a singleton horizon-k vNM stable set.

Indeed, Atay, Mauleon and Vannetelbosch (2025) show that, for school choice prob-

lems (i.e. many-to-one priority-based matching problems) with farsighted students

and coalitional deviations, a singleton set consisting of the TTC matching is a vNM

farsighted stable set.7

In matching markets with couples, members of a couple do not only care about

their own assignment but also about their partner’s assignment. When all couples

are myopic, a Pareto-dominated matching may be the unique stable matching even

if there is some agent who has the highest priority for every object. In addition,

there may not even exist a stable matching.8 Once couples become farsighted,

we find that, if there is some agent who has the highest priority for every object,

then each Pareto efficient matching where the couple of this agent gets their most

preferred matches is a singleton horizon-k vNM stable set for k large enough. Thus,

farsightedness may improve both efficiency and stability.

Finally, we show that, in the case of private endowments where each agent owns

an object, a singleton set consisting of the TTC matching is the unique horizon-k

vNM stable set.

The paper is organized as follows. In Section 2, we introduce priority-based

matching problems and we provide a formal description of the TTC mechanism and

its algorithm. In Section 3, we introduce the notion of horizon-k vNM stable set

and we provide our main result. We also look at the robustness with respect to

an alternative concept of limited farsightedness and multiple units/copies of each

object. In Section 4, we consider priority-based matching problems with couples. In

Section 5, we look at the matching problem where each agent owns an object. In

7Morrill (2015) and Hakimov and Kesten (2018) propose variations of the TTC for school choice

problems. Atay, Mauleon and Vannetelbosch (2025) show that the matchings obtained from the

variations are all farsightedly stable. For one-to-one priority-based problems, all variations coincide.
8See Klaus and Klijn (2005, 2007), Roth (2008). Biró and Klijn (2013) provide a detailed

overview of matching markets with couples under preferences.
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Section 6, we conclude.

2 Priority-based matching problems

A priority-based matching problem is a list 〈I, S, P, F 〉 where (i) I = {i1, ..., in} is

the set of agents, (ii) S = {s1, ..., sm} is the set of objects, (iii) P = (Pi1 , ..., Pin)

is the preference profile where Pi is the strict preference of agent i over the objects

and her outside option, and (iv) F = (Fs1 , ..., Fsm) is the strict priority structure of

the objects over the agents. Let i be a generic student and s be a generic object.

We write i for singletons {i} ⊆ I and s for singletons {s} ⊆ S. The preference

Pi of agent i is a linear order over S ∪ i. Agent i prefers object s to object s′

if sPis
′. Object s is acceptable to agent i if sPii (i.e. sPii means that i strictly

prefers s to being unassigned). We often write Pi = s, s′, s′′ meaning that agent i’s

most preferred object is s, her second best is s′, her third best is s′′ and any other

object is unacceptable for her. Let Ri be the weak preference relation associated

with the strict preference relation Pi. The priority Fs of object s is a linear order

over I. That is, Fs assigns ranks to agents according to their priority for object

s. The rank of agent i for object s is denoted by Fs(i) and Fs(i) < Fs(j) means

that agent i has higher priority for object s than agent j. For s ∈ S, i ∈ I, let

F+(s, i) = {j ∈ I | Fs(j) < Fs(i)} be the set of agents who have higher priority

than agent i for object s.

A matching outcome µ of a priority-based matching problem is a set of ordered

pairs {(i, j)}i∈I,j∈S∪{i} such that for all i ∈ I and all s ∈ S the following hold: (i)

for each agent i ∈ I there is a unique j ∈ S ∪ {i} with (i, j) ∈ µ, (ii) for each object

s ∈ S it holds that #{i ∈ I | (i, s) ∈ µ} ≤ 1. For i ∈ I we write j = µ(i) if (i, j) ∈ µ;

for s ∈ S we write i = µ(s) if (i, s) ∈ µ. Condition (i) means that agent i is assigned

to object s under µ if µ(i) = s and is unassigned under µ if µ(i) = i. Condition (ii)

requires that no object is assigned to more than one agent. The set of all matchings

is denoted M.9 For instance, µ = {(i1, s2), (i2, s3), (i3, s1), (i4, i4)} is the matching

where agent i1 is assigned to object s2, agent i2 is assigned to object s3, agent i3 is

assigned to object s1, and agent i4 is unassigned.

A matching µ′ Pareto dominates a matching µ if µ′(i)Riµ(i) for all i ∈ I and

9Throughout the paper we use the notation ⊆ for weak inclusion and ⊂ for strict inclusion.

Finally, # will refer to the notion of cardinality.
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µ′(j)Pjµ(j) for some j ∈ I. A matching is Pareto efficient if it is not Pareto dom-

inated by another matching. A matching µ is stable if: (individual rationality) for

all i ∈ I we have µ(i)Rii; (non-wastefulness) for all i ∈ I and all s ∈ S, if sPiµ(i)

then #{j ∈ I | µ(j) = s} = 1; and (no justified envy) for all i, j ∈ I with µ(j) = s,

if µ(j)Piµ(i) then j ∈ F+(s, i).

A mechanism systematically selects a matching for any given priority-based

matching problem 〈I, S, P, F 〉.10 Abdulkadirog̃lu and Sönmez (2003) introduce the

Top Trading Cycles (TTC) mechanism for selecting a matching for general priority-

based matching problems. In the case of a priority-based matching problem, the

TTC mechanism finds a matching by means of the following TTC algorithm.

Step 1. Each agent i ∈ I points to the object that is ranked first in Pi. If there is no

such object, then agent i points to herself and she forms a self-cycle. Each

object s ∈ S points to the agent that has the highest priority in Fs. Since the

number of agents and objects are finite, there is at least one cycle. A cycle is

an ordered list of distinct objects and distinct agents (s1, i1, s2, ..., sl, il) where

s1 points to i1 (denoted s1 7→ i1), i1 points to s2 (i1 7→ s2), sl points to il

(sl 7→ il) and il points to s1 (il 7→ s1). Each object (agent) can be part of at

most one cycle. Every agent in a cycle is assigned to the object she points to

and she is removed. Similarly, every agent in a self-cycle is not assigned to

any object and is removed. If an object s is part of a cycle, then s is removed.

Let C1 = {c1
1, c

2
1, ..., c

L1
1 } be the set of cycles in Step 1 (where L1 ≥ 1 is the

number of cycles in Step 1). Let I1 be the set of agents who are assigned to

some object at Step 1. Let S1 be the set of objects that are assigned to some

agent at Step 1. Let ml
1 be all the matches from cycle cl1 that are formed in

Step 1 of the algorithm:

ml
1 =

{
{(i, s) | i, s ∈ cl1 and i 7→ s} if cl1 6= (j)

{(j, j)} if cl1 = (j)
(1)

where (j, j) simply means that agent j who is in a self-cycle ends up being

definitely unassigned to any object. Let M1 =
⋃L1

l=1 m
l
1 be all the matches

between agents and objects formed in Step 1 of the algorithm. Let c̄l1 = #{i ∈
10A mechanism is individually rational (non-wasteful / stable / Pareto efficient) if it always

selects an individually rational (non-wasteful / stable / Pareto efficient) matching. A mechanism

is strategy-proof if no agent can ever benefit by unilaterally misrepresenting her preferences.
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I | i ∈ cl1} be the number of agents involved in cycle cl1, for l = 1, ..., L1. Let

cmax
1 = max{c̄1

1, ..., c̄
L1
1 }.

Step k ≥ 2. Each remaining agent i ∈ I \
⋃k−1

l=1 Il points to the object s ∈ S \
⋃k−1

l=1 Sl

that is ranked first in Pi. If there is no such object, then agent i points to

herself and she forms a self-cycle. Each object s ∈ S \
⋃k−1

l=1 Sl points to the

agent j ∈ I \
⋃k−1

l=1 Il that has the highest priority in Fs. There is at least

one cycle. Every agent in a cycle is assigned to the object she points to and

she is removed. Similarly, every agent in a self-cycle is not assigned to any

object and is removed. If an object s is part of a cycle, then s is removed.

Let Ck = {c1
k, c

2
k, ..., c

Lk
k } be the set of cycles in Step k (where Lk ≥ 1 is the

number of cycles in Step k). Let Ik be the set of agents who are assigned to

some object at Step k. Let Sk be the set of objects that are assigned to some

agent at Step k. Let ml
k be all the matches from cycle clk that are formed in

Step k of the algorithm:

ml
k =

{
{(i, s) | i, s ∈ clk and i 7→ s} if clk 6= (j)

{(j, j)} if clk = (j)
(2)

Let Mk =
⋃Lk

l=1m
l
k be all the matches between agents and objects formed in

Step k of the algorithm. Let c̄lk = #{i ∈ I | i ∈ clk} be the number of agents

involved in cycle clk, for l = 1, ..., Lk. Let cmax
k = max{c̄1

k, ..., c̄
Lk
k }.

End. The algorithm stops when all agents have been removed. Let k̄ be the step

at which the algorithm stops. Let µT denote the matching obtained from

the Top Trading Cycles mechanism and it is given by µT =
⋃k̄

k=1Mk. Let

γ = max{cmax
1 , ..., cmax

k̄
} be the maximum number of agents involved in any

cycle of the TTC.

One property of the TTC algorithm is that, for any k′ ∈ {1, . . . , k̄ − 1}, given

all the matches already settled, i.e.
⋃k′

k=1Mk, students involve in cycle clk′+1, l ∈
{1, . . . , Lk′+1}, of Step k′ + 1 of the TTC algorithm obtains their best possible as-

signment in ml
k′+1. Hence, the TTC mechanism is Pareto efficient. In addition, this

mechanism is also strategy-proof (see Abdulkadirog̃lu and Sönmez, 2003). Mean-

while TTC is individually rational and non-wasteful, it is not stable.11 Another

11Abdulkadirog̃lu, Che, Pathak, Roth and Tercieux (2020) show that the TTC mechanism is
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mechanism that is commonly adopted all over the world is Gale and Shapley’s De-

ferred Acceptance (DA) algorithm. Let µD denote the matching obtained from the

DA mechanism. The DA mechanism is strategy-proof and stable but not Pareto

efficient.12

3 Horizon-k vNM Stable Set

3.1 Definitions

Is it possible to stabilize the matching obtained from the TTC algorithm once agents

become limited farsighted? If yes, how much farsightedness from the agents do we

need? To answer this question we propose the notion of horizon-k vNM stable set

for priority-based matching problems to study the matchings that are stable when

agents are limited in their degree of farsightedness.

A horizon-k improving path for priority-based matching problems is a sequence of

matchings that can emerge when limited farsighted agents form or destroy matches

based on the improvement the k-steps ahead matching offers them relative to the

current matching. A set of matchings is a horizon-k vNM stable set if (Internal

Stability) for any two matchings belonging to the set, there is no horizon-k improving

path from one matching to the other one, and (External Stability) there always exists

a horizon-k improving path from every matching outside the set to some matching

within the set.

Given a matching µ ∈M with agent i ∈ I assigned to object s ∈ S, so µ(i) = s,

the matching µ′ that is identical to µ, except that the match between i and s has

been destroyed by either i or s, is denoted by µ′ = µ−(i, s)+(i, i). Given a matching

µ ∈ M such that i ∈ I and s ∈ S are not matched to one another, the matching

µ′ that is identical to µ, except that the pair (i, s) has formed at µ′, is denoted by

justified envy minimal in the class of Pareto efficient and strategy-proof mechanisms. In addition,

Doğan and Ehlers (2022) find that, for any stability comparison satisfying three basic properties,

the TTC mechanism is minimally unstable among Pareto efficient and strategy-proof mechanisms.
12Doğan and Ehlers (2021) study efficient and minimally unstable Pareto improvements over

the DA mechansism. Che and Tercieux (2019) show that both Pareto efficiency and stability

can be achieved asymptotically using DA and TTC mechanisms when agents have uncorrelated

preferences. Kesten (2006) compares the TTC and DA mechanisms with respect to some additional

properties (fairness, resource monotonicity, population monotonicity and consistency).
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µ′ = µ+ (i, s)− (i, µ(i))− {(j, s) | µ(j) = s}+ {(j, j) | µ(j) = s}.13

Definition 1. Let 〈I, S, P, F 〉 be a priority-based matching problem. A horizon-k

improving path from a matching µ ∈ M to a matching µ′ ∈ M \ {µ} is a finite

sequence of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that for

every l ∈ {0, . . . , L− 1} either

(i) µl+1 = µl − (i, s) + (i, i) for some (i, s) ∈ I × S such that µmin{l+k,L}(i)Piµl(i),

or

(ii) µl+1 = µl + (i, s)− (i, µl(i))−{(j, s) | µl(j) = s}+ {(j, j) | µl(j) = s} for some

(i, s) ∈ I × S such that µmin{l+k,L}(i)Piµl(i) and Fs(i) < Fs(j) if µl(s) = j.

Definition 1 tells us that a horizon-k improving path for priority-based matching

problems consists of a sequence of matchings where along the sequence agents form

or destroy matches based on the improvement the k-steps ahead matching offers

them relative to the current one. Precisely, along a horizon-k improving path, each

time some agent i is on the move she is comparing her current match (i.e. µl(i))

with the match she will get k steps ahead on the sequence (i.e. µl+k(i)) except if

the end matching of the sequence lies within her horizon (i.e. L < l + k). In such

a case, she simply compares her current match (i.e. µl(i)) with the end match (i.e.

µL(i)).

Objects can be assigned to any agent on their priority lists unless they have

already been assigned to some agent. When an object s ∈ S is already assigned to

some agent µl(s) at µl, this object s can be reassigned to another agent µl+1(s) 6=
µl(s) at µl+1 only if agent µl+1(s) has a higher priority than agent µl(s).

Let some µ ∈ M be given. If there exists a horizon-k improving path from a

matching µ to a matching µ′, then we write µ→k µ
′. The set of matchings µ′ ∈M

such that there is a horizon-k improving path from µ to µ′ is denoted by φk(µ), so

φk(µ) = {µ′ ∈M | µ→k µ
′}.

Definition 2. Let 〈I, S, P, F 〉 be a priority-based matching problem. A set of

matchings V ⊆M is a horizon-k vNM stable set if it satisfies:

(i) For every µ, µ′ ∈ V , it holds that µ′ /∈ φk(µ).

(ii) For every µ ∈M \ V , it holds that φk(µ) ∩ V 6= ∅.
13We use the notation + for adding pairs and − for deleting pairs
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Condition (i) of Definition 2 corresponds to internal stability (IS). For any two

matchings µ and µ′ in the horizon-k vNM stable set V there is no horizon-k improv-

ing path connecting µ to µ′. Condition (ii) of Definition 2 expresses external stability

(ES). There exists a horizon-k improving path from every matching µ outside the

horizon-k vNM stable set V to some matching in V .14

3.2 Main result

Remember that γ = max{cmax
1 , ..., cmax

k̄
} is the maximum number of agents involved

in any cycle of the TTC.

Theorem 1. Let 〈I, S, P, F 〉 be a priority-based matching problem and µT be the

matching obtained from the TTC mechanism. The singleton set {µT} is a horizon-k

vNM stable set for k ≥ (3γ − 1).

Theorem 1 shows that, once agents are sufficiently farsighted (i.e. k ≥ 3γ − 1),

the matching obtained from the TTC algorithm is stabilized. All the proofs not in

the main text can be found in the appendix. In Example 1 we provide the basic

intuition behind Theorem 1 and its proof. In addition, it shows that, once agents

are no more myopic, the matching obtained from the DA algorithm may become

unstable.

Example 1. Consider a priority-based matching problem 〈I, S, P, F 〉 with I =

{i1, i2, i3} and S = {s1, s2, s3}. Agents’ preferences and objects’ priorities are as

follows.

Agents

Pi1 Pi2 Pi3

s1 s1 s2

s3 s2 s1

s2 s3 s3

Objects

Fs1 Fs2 Fs3

i3 i2 i2

i1 i1 i3

i2 i3 i1

In Example 1, µT = {(i1, s3), (i2, s1), (i3, s2)} is the matching obtained from the

TTC algorithm. In the first round of the TTC algorithm, there is one cycle where

agent i2 points to object s1, object s1 points to agent i3, agent i3 points to object s2

14Ehlers (2007) and Herings, Mauleon and Vannetelbosch (2017) study vNM stable sets when all

agents are myopic in two-sided matching problems. Doğan and Ehlers (2024) show the existence

of vNM stable sets in one-to-one matching problems with myopic and farsighted agents.
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and object s2 points to agent i2. That is, C1 = {c1
1} with c1

1 = (s1, i3, s2, i2). Agent i2

is assigned to object s1 and agent i3 is assigned to object s2: m1
1 = {(i2, s1), (i3, s2)},

and so i2 and i3 exchange their priority. In the second round of the TTC algorithm,

there is only one leftover agent, i1, who points to object s3 and one leftover object,

s3, that points to agent i1. That is, C2 = {c1
2} with c1

2 = (s3, i1). Agent i1 is assigned

to object s3: m1
2 = {(i1, s3)}, and so µT = m1

1 ∪m1
2.

From Theorem 1 we know that {µT} is a horizon-k vNM stable set for k ≥ 3γ−1.

Indeed, if k ≥ 3γ − 1, then from any µ 6= µT there exists a horizon-k improving

path leading to µT . Notice that γ = cmax
1 = 2. Take for instance the matching

µ = {(i1, s1), (i2, s2), (i3, s3)}. We now construct a horizon-k improving path from

µ to µT = {(i1, s3), (i2, s1), (i3, s2)} following the steps as in the proof of Theorem

1 that can be found in the appendix. This horizon-k improving path consists of a

sequence of distinct matchings, µ0, µ1, µ2, µ3, µ4, µ5 with

µ0 = {(i1, s1), (i2, s2), (i3, s3)} = µ,

µ1 = {(i1, i1), (i2, s2), (i3, s1)},

µ2 = {(i1, i1), (i2, s2), (i3, i3)}

µ3 = {(i1, i1), (i2, s1), (i3, i3)},

µ4 = {(i1, i1), (i2, s1), (i3, s2)},

µ5 = {(i1, s3), (i2, s1), (i3, s2)} = µT .

First, we consider agents and objects belonging to the cycles in C1. Notice that

m1
1 = {(i2, s1), (i3, s2)} ∩ µ0 = ∅. Looking forward towards µ4 and µT (where

µ4(i3) = µT (i3)), agent i3 matches to the object s1 that ranks her first on its priority

list to reach the matching µ1 = {(i1, i1), (i2, s2), (i3, s1)} where agent i3 is matched

to the object in c1
1 where she has priority. By doing so, agent i1 is left without

object. In µ0 (and µ1), agent i2 is already matched to the object in c1
1 where she

has priority.15 Next, agent i3 leaves her object s1 to reach the matching µ2 =

{(i1, i1), (i2, s2), (i3, i3)} where agent i3 is not assigned to any object. Agent i3 is

temporarily worse off, but she anticipates to end up being matched with µT (i3).

Next, agent i2 matches to s1 that was left unassigned to reach the matching µ3 =

{(i1, i1), (i2, s1), (i3, i3)}. Next, agent i3 matches to s2 that was left by i2 to reach the

matching µ4 = {(i1, i1), (i2, s1), (i3, s2)} with m1
1 = {(i2, s1), (i3, s2)} ⊆ µ4. Finally,

15Hence, it is sufficient that agent i3 looks forward at least 4 (instead of 5) steps ahead for having

incentives to engage her first move towards µ4.
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we consider agents and objects belonging to the cycles in C2. Since m1
2 = {(i1, s3)}∩

µ4 = ∅, agent i1 is assigned to object s3 to form the match (i1, s3) and to reach the

matching µ5 = µT . Thus, µT ∈ φk(µ0).

We now show that the matching µD = {(i1, s3), (i2, s2), (i3, s1)} obtained from

the DA algorithm as well as the matching obtained from the IA algorithm, µB =

{(i1, s1), (i2, s3), (i3, s2)} 6= µD, do not belong to any horizon-k vNM stable set for

k ≥ 5. Since agent i1 is as well off and agents i2 and i3 are strictly better off in µT

than in µD, we have that there is no horizon-k improving path from µT to µD for

k ≥ 5. That is, µD /∈ φk(µT ) for k ≥ 5. Hence, {µD} is not a horizon-k vNM stable

set for k ≥ 5 since (ES) is violated. Let

µ1 = {(i1, s1), (i2, i2), (i3, s2)},

µ2 = {(i1, s1), (i2, s3), (i3, s2)} = µB,

µ3 = {(i1, s1), (i2, s2), (i3, i3)},

µ4 = {(i1, s1), (i2, s2), (i3, s3)},

µ5 = {(i1, i1), (i2, s2), (i3, s1)}.

Computing the horizon-k improving paths emanating from µT for k ≥ 5, we get

φk(µT ) = {µ1, µ2, µ3, µ4}. Notice that µ5 /∈ φk(µT ) since agent i1 is worse off in µ5

than in µT . From µ1, µ2, µ3, µ4 and µ5, there is a horizon-k improving path to µD.

That is, µD ∈ φk(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}. From µD there is only a horizon-k

improving path to µT ; i.e. φk(µD) = {µT} for k ≥ 5. For a set V ⊇ {µD} to be a

horizon-k vNM stable set, we need that (i) µT /∈ V (otherwise (IS) is violated), (ii) a

single µ ∈ {µ1, µ2, µ3, µ4} should belong to V to satisfy (ES) since µD /∈ φk(µT ) for

k ≥ 5. But, V would then violate (IS) since µD ∈ φk(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}.
Thus, there is no horizon-k vNM stable set V such that µD ∈ V for k ≥ 5.

Is V = {µT} the unique horizon-k vNM stable set for k ≥ 5 in our example? Any

other set V ′ such that µT ∈ V ′ violates (IS), and hence µT /∈ V ′. Then, µD ∈ V ′

because, otherwise, V ′ violates (ES) since φk(µD) = {µT} for k ≥ 5. As already

shown, there is no V ′ such that µD ∈ V ′ that is a horizon-k vNM stable set for

k ≥ 5. Hence, we have that V = {µT} is the unique horizon-k stable set for k ≥ 5.

Thus, the DA matching µD and the IA matching µB do not belong to any horizon-

k vNM stable set for k ≥ 5. Since the matching obtained from the IA algorithm

is Pareto efficient, Example 1 also shows that there are priority-based matching

problems where some Pareto efficient matching does not belong to any horizon-k
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vNM stable set for k ≥ 3γ − 1.

What happens if k becomes small? Computing the horizon-k improving paths

emanating from µT for k ≤ 4 in Example 1, we get φk(µT ) = {µ1, µ2, µ3, µ4, µ5, µD}.
So, there is now a horizon-k improving path from µT to µD. In addition, from µ1, µ2,

µ3, µ4 and µ5, there is still a horizon-k improving path to µD. That is, µD ∈ φk(µ)

for µ ∈ {µ1, µ2, µ3, µ4, µ5, µT} for k ≤ 4. From µD there is no horizon-k improving

path for k ≤ 2, but there is one for 3 ≤ k ≤ 4; i.e. φk(µD) = ∅ for k ≤ 2 and

φk(µD) = {µT} for 3 ≤ k ≤ 4. It follows then that for 3 ≤ k ≤ 4, both V = {µD}
and V ′ = {µT} are horizon-k vNM stable sets. However, for k ≤ 2, V = {µD} is the

unique horizon-k vNM stable set. In general, it holds that for any priority-based

matching problem, the DA matching µD belongs to all horizon-1 vNM stable sets.16

Remark 1. Let 〈I, S, P, F 〉 be a priority-based matching problem and µD be the

matching obtained from the DA mechanism. The matching µD belongs to all

horizon-1 vNM stable sets but may not belong to any horizon-k vNM stable set

for k ≥ 3γ − 1.

In the appendix we show that one could find a tighter bound on k such that

for all k′ ≥ k, the singleton set {µT} is a horizon-k′ vNM stable set. By carefully

choosing the order in which agents successively first match to their priority object,

next leave their priority object, and finally match to their top choice object, the

singleton set {µT} is a horizon-k′ vNM stable set for k′ ≥ 2γ + 1. However, it relies

on improving paths that require much more coordination on behalf of the agents

than the ones associated to the lower bound of Theorem 1, i.e. 3γ−1. Indeed, along

those improving paths, the order in which agents finally match to their top choice

object has to be the same as the order in which they first match to their priority

object.

By simply replacing µmin{l+k,L}(i)Piµl(i) by µL(i)Piµl(i) in the definition of a

horizon-k improving path, we obtain the definition of a farsighted improving path.

Let φ∞(µ) be the set of matchings that can be reached by means of a farsighted

improving path emanating from µ. Given the number of possible matchings is finite,

there exists k? such that for all k ≥ k?, φk(µ) = φk+1(µ), and so φk?(µ) = φ∞(µ).17

16Proposition 3 in Luo, Mauleon and Vannetelbosch (2021) provides a characterization of a

horizon-1 vNM stable set of networks. Since matchings are a subclass of networks and the DA

matching is stable, it follows that the DA matching belongs to all horizon-1 vNM stable sets.
17Mauleon, Vannetelbosch and Vergote (2011) define and characterize the vNM farsighted stable
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Definition 3. Let 〈I, S, P, F 〉 be a priority-based matching problem. A set of

matchings V ⊆M is a vNM farsighted stable set if it satisfies:

(i) For every µ, µ′ ∈ V , it holds that µ′ /∈ φ∞(µ).

(ii) For every µ ∈M \ V , it holds that φ∞(µ) ∩ V 6= ∅.

Corollary 1. Let 〈I, S, P, F 〉 be a priority-based matching problem and µT be the

matching obtained from the TTC mechanism. The singleton set {µT} is a vNM

farsighted stable set.

The notion of vNM farsighted stable set does not require that agents choose

their best alternative along the farsighted improving paths. Nevertheless, Corollary

1 is robust to the incorporation of various forms of maximality in the definition of

farsighted improving path, like the strong rational expectations farsighted stable set

in Dutta and Vohra (2017) and absolute maximality as in Ray and Vohra (2019).18

3.3 Multiple copies versus multiple units

Example 2. Consider a priority-based matching problem 〈I, S, P, F 〉 with I =

{i1, i2, i3, i4} and S = {s1, s
′
1s2, s3}. All agents are indifferent between s1 and s′1.

Both objects s1 and s′1 rank the agents in the same order. Let qs be the number of

units of each object s. Agents’ preferences and objects’ priorities are as follows.

Agents

Pi1 Pi2 Pi3 Pi4

s1, s
′
1 s1, s

′
1 s2 s1, s

′
1

s2 s2 s1, s
′
1 s2

s3 s3 s3 s3

Objects

Fs1 Fs′1
Fs2 Fs3

qs 1 (2) 1 (0) 1 (1) 1 (1)

i3 i3 i1 i2

i1 i1 i2 i3

i4 i4 i4 i4

i2 i2 i3 i1

Consider first the matching problem with multiple copies of s1, where qs1 =

1 and qs′1 = 1.19 Depending on whether agent i1 points either to s1 or to s′1,

set for two-sided matching problems.
18See also Herings, Mauleon and Vannetelbosch (2020).
19The object s′ is said to be a copy of s if and only if Fs = Fs′ and all agents are indifferent

between s and s′.
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the TTC mechanism leads either to µT = {(i1, s1), (i2, s3), (i3, s2), (i4, s
′
1)} or to

µT ′ = {(i1, s′1), (i2, s3), (i3, s2), (i4, s1)}. One can show that, from any µ 6= µT , µT ′,

there is a horizon-k improving path going to either µT or µT ′. For instance, take

µ = {(i1, s1), (i2, s2), (i3, s3), (i4, s
′
1)}, the horizon-k improving path consists of a

sequence of distinct matchings, µ0, µ1, µ2, µ3, µ4, µ5, µ6 with

µ0 = {(i1, s1), (i2, s2), (i3, s3), (i4, s
′
1)},

µ1 = {(i1, i1), (i2, s2), (i3, s1), (i4, s
′
1)},

µ2 = {(i1, s2), (i2, i2), (i3, s1), (i4, s
′
1)},

µ3 = {(i1, i1), (i2, i2), (i3, s1), (i4, s
′
1)},

µ4 = {(i1, i1), (i2, i2), (i3, s2), (i4, s
′
1)},

µ5 = {(i1, s1), (i2, i2), (i3, s2), (i4, s
′
1)},

µ6 = {(i1, s1), (i2, s3), (i3, s2), (i4, s
′
1)} = µT ,

It follows that the set {µT , µT ′} is a horizon-k vNM stable set for k ≥ 5. In the case

agents are indifferent between some objects and these objects rank the agents in the

same order, the proof of Theorem 1 and Corollary 1 can be basically extended to

show that the set of TTC matchings20 is a horizon-k vNM stable set and a vNM

farsighted stable set.

Consider next the matching problem with multiple units of s1, where qs1 = 2

and qs′1 = 0. The TTC mechanism leads to µT = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)}
with cycles C1 = {(s1, i3, s2, i1)}, C2 = {(s1, i4)} and C3 = {(s3, i2)}. We now

argue that the set {µT} is no more a horizon-k vNM stable set. From the matching

µ = {(i1, s1), (i2, s2), (i3, s3), (i4, s1)} there is no horizon-k improving path leading to

µT . At µ, i1 is already matched to her preferred object and i3 cannot evict i1 from

s1 so that i1 would next evict i2 from s2. Indeed, i4 is matched to s1 and i4 is ranked

below i1 by s1. But, if agents i1 and i3, who look k steps ahead towards µT , were able

to deviate together, then they would first match to their prioritized objects, they

would next leave those objects, and they would finally match their TTC objects.

Notice that, i1 is indifferent between µ and µT while i3 strictly prefers µT to µ.

In fact, Atay, Mauleon and Vannetelbosch (2025) show that, in general, {µT} is a

horizon-k vNM stable set for priority-based matching problems with multiple units

20Depending in which order the agents point to each copy leads to different but equivalent TTC

matchings. In fact, all TTC matchings are identical up to a permutation of the copies. Each agent

gets the same object or one of its copies.
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if we allow for such coalitional moves. However, coalitional moves require more

coordination and cooperation on behalf of the farsighted agents.

In Example 2, when all agents are myopic, stable matchings are either both

matchings {(i1, s1), (i2, s2), (i3, s
′
1), (i4, s3)} and {(i1, s′1), (i2, s2), (i3, s1), (i4, s3)} or

the single equivalent matching {(i1, s1), (i2, s2), (i3, s1), (i4, s3)}. But, when all agents

become farsighted, it matters for stability whether the matching problem involves

multiple copies or multiple units and whether coalitional moves are allowed or not.

3.4 Alternative notion of limited farsightedness

An alternative concept for limited farsightedness is obtained by adapting Herings,

Mauleon and Vannetelbosch (2019) definition of a horizon-L farsighted set of net-

works to priority-based matching problems (see the appendix for details). A horizon-

L farsighted set of matchings V has to satisfy three requirements: (i) horizon-L

deterrence of external deviations, (ii) horizon-L external stability, and (iii) minimal-

ity. A set of matchings V satisfies horizon-L deterrence of external deviations if all

possible deviations from any matching µ ∈ V to a matching outside V are deterred

by a threat of ending worse off or equally well off. A set of matchings V satisfies

horizon-L external stability if from any matching outside of V there is a sequence

of farsighted improving paths of length smaller than or equal to L leading to some

matching in V . For L ≥ 1, a set of matchings V ⊆ M is a horizon-L farsighted

set if it is a minimal set satisfying horizon-L deterrence of external deviations and

horizon-L external stability. From Herings, Mauleon, and Vannetelbosch (2019) we

have that a horizon-L farsighted set of matchings exists.

Theorem 2. Let 〈I, S, P, F 〉 be a priority-based matching problem and µT be the

matching obtained from the TTC mechanism. The singleton set {µT} is a horizon-

L farsighted set for L ≥ 3γ.

Thus, our main result is robust to an alternative notion of limited farsightedness.

The only difference is that one more degree of farsightedness is needed for deterring

deviations from the TTC matching µT .
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4 Matching with couples

Suppose that the set of agents is enlarged to 2n agents, I = {i1, ..., i2n}, and

is partitioned into a set of couples C = {c1, . . . , cn} = {(i1, in+1), . . . , (in, i2n)}.
Let c be a generic couple. The partner of agent i ∈ I is denoted c(i). Let

S = {s1, ..., sm} be the set of objects. Let P ? = {Pc1 , . . . , Pcn} be the prefer-

ence profile of the couples where Pcl is the strict preference of couple cl = (il, in+l)

over their objects and their outside options, l = 1, . . . , n. The preference Pcl of cou-

ple cl is a linear order over (S ∪ il × S ∪ in+l) \ {(s, s) | s ∈ S}. For instance,

Pcl = (s1, s3), (s2, s4), (s3, in+l), . . . , (il, in+l) indicates that couple cl = (il, in+l)

prefers il and in+l being matched to s1 and s3, respectively, to being matched to s2

and s4, respectively, and that the worst outcome for the couple is to be both unas-

signed. The pair of objects (s, s′) are acceptable for couple cl if (s, s′)Pcl(il, in+l).

Let Rcl be the weak preference relation associated with the strict preference relation

Pcl .

Definition 4. Let 〈I, S, P ?, F 〉 be a couples priority-based matching problem. A

horizon-k improving path from a matching µ ∈M to a matching µ′ ∈M\ {µ} is a

finite sequence of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that

for every l ∈ {0, . . . , L− 1} either

(i) µl+1 = µl − (i, s) + (i, i) for some (i, s) ∈ I × S such that(
µmin{l+k,L}(i), µmin{l+k,L}(c(i))

)
P(i,c(i)) (µl(i), µl(c(i))) ,

or

ii) µl+1 = µl− (i, s)− (j, s′) + (i, i) + (j, j) for some (i, s), (j, s′) ∈ I×S such that{(
µmin{l+k,L}(i), µmin{l+k,L}(c(i))

)
P(i,c(i)) (µl(i), µl(c(i)))(

µmin{l+k,L}(j), µmin{l+k,L}(c(j))
)
R(j,c(j)) (µl(j), µl(c(j))) ,

or

(iii) µl+1 = µl + (i, s)− (i, µl(i))−{(j, s) | µl(j) = s}+ {(j, j) | µl(j) = s} for some

(i, s) ∈ I × S such that
(
µmin{l+k,L}(i), µmin{l+k,L}(c(i))

)
P(i,c(i)) (µl(i), µl(c(i)))

and Fs(i) < Fs(j) if µl(s) = j.21

21By allowing for a pair of agents to match simultaneously to some objects, Proposition 1 still

holds but less farsightedness on behalf of the agents may be necessary.
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In the case of matching problems with couples, we require that, along a horizon-

k improving path, each time some agent i is on the move her couple (i, c(i)) is

better off at the matches they will get k steps ahead on the sequence compared

to their current matches. Moreover, since we deal with couples we allow a pair of

agents to simultaneously leave their objects. The set of matchings µ′ ∈ M such

that there is a horizon-k improving path from µ to µ′ is denoted by φk(µ), so

φk(µ) = {µ′ ∈ M | µ →k µ
′}. Replacing φk(µ) by φk(µ) in Definition 2 we obtain

the definition of a horizon-k vNM stable set for priority-based matching problems

with couples.

Example 3. (Klaus and Klijn, 2007) Consider a couples priority-based matching

problem 〈I, S, P ?, F 〉 with I = {i1, i2, i3, i4} and S = {s1, s2, s3}. Couples’ prefer-

ences and objects’ priorities are as follows.

Couples

P(i1,i3) P(i2,i4)

(s3, s1) (s2, s3)

(s2, s3)

(s1, s2)

Objects

Fs1 Fs2 Fs3

i3 i3 i3

i1 i2 i4

i1 i1

When couples are myopic, we have that µ′′ = {(i1, s2), (i2, i2), (i3, s3), (i4, i4)} is

the unique stable matching in Example 3. When couples and objects are farsighted,

Atay, Funck, Mauleon and Vannetelbosch (2024) show that {µ′′} is the unique vNM

farsighted stable set. But, this matching µ′′ is Pareto-dominated for agents (couples)

by µ′ = {(i1, s3), (i2, i2), (i3, s1), (i4, i4)}. Notice that agent i3 has priority for all

three objects. When only agents are farsighted, can we stabilize some matching

where the couple of i3 gets their best possible match (i.e. (s3, s1))? If yes, how

much farsightedness do we need?

In Example 3, the singleton set {µ′} is a horizon-k vNM stable set for k ≥ 3

since there is a horizon-k improving path from any other matching to µ′. From any

µ 6= µ′, looking k steps ahead, agent i3 matches successively to each object that was

assigned to another agent in µ. Next, agent i3 followed by agent i1 match to s1 and

s3, respectively. They thereby reach µ′ where the couple obtains their most preferred

objects. In addition, the Pareto dominated matching µ′′ is now destabilized. From

µ′, the couple (i1, i3) will never engage a move towards µ′′ since they strictly prefer

µ′ to µ′′, and the other couple is indifferent between both matchings.22

22In Example 3, there is another horizon-k vNM stable set {µ′′′} where the other couple (i2, i4)
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Example 4. (Roth, 2008) Consider a couples matching problem 〈I, S, P ?, F 〉 with

I = {i1, i2, i3, i4} and S = {s1, s2}. Couples’ preferences and objects’ priorities are

as follows.

Couples

P(i1,i3) P(i2,i4)

(s1, s2) (s1, i4)

(s2, i4)

Objects

Fs1 Fs2

i1 i1

i2 i2

i3 i3

Although there is again an agent who has priority over all other agents for

both objects, Roth (2008) shows that there does not exist a stable matching in

Example 4.23 Furthermore, Atay, Funck, Mauleon and Vannetelbosch (2024) show

that, when agents and objects behave farsightedly, there are no vNM farsighted

stable set in this example. However, when only one side is farsighted, the matchings

µ′ = {(i1, s1), (i2, i2), (i3, s2), (i4, i4)} and µ′′ = {(i1, i1), (i2, s1), (i3, i3), (i4, i4)} are

horizon-k vNM stable set for k ≥ 3. Thus, farsightedness on behalf of the couples

may help to stabilize Pareto efficient outcomes.

Proposition 1. Let 〈I, S, P ?, F 〉 be a couples priority-based matching problem. Sup-

pose there is some agent i? ∈ I such that Fi?(s) < Fj(s) for all s ∈ S, j ∈ I

(j 6= i?), and m ≥ 2n. Each singleton set {µ?} where µ? is Pareto efficient and

(µ?(i?), µ?(c(i?)))R(i?,c(i?)) (s, s′) for all s, s′ ∈ S, s 6= s′, is a horizon-k vNM stable

set for all k ≥ 2n+ 2.

This proposition tells us that, if there is some agent i? who has priority over

all objects and k is greater than the number of agents, then each Pareto efficient

matching where the couple of i? gets their most preferred matches is a singleton

horizon-k vNM stable set.

5 Agents own the objects

Closely related to priority-based matching problems are matching problems where

the agents own the object. Let 〈I, S, P, F 〉 be a matching problem where each agent

gets their preferred assignment: µ′′′ = {(i1, i1), (i2, s2), (i3, i3), (i4, s3)}.
23Klaus and Klijn (2005) look for restrictions on the preferences to guarantee the existence of a

stable matching in markets with couples.
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i owns an object s. The strict priority structure F of the objects over the agents

is such that the priority Fs of object s only ranks the owner of object s. Without

loss of generality, let agent il be the owner of object sl, for l = 1, . . . , n. Let is be a

generic agent who owns object s.

Example 5. Consider a matching problem 〈I, S, P, F 〉 with I = {i1, i2, i3} and

S = {s1, s2, s3}, and where agent il owns object sl, for l = 1, 2, 3. Agents’ preferences

and endowments are as follows.

Agents

Endowment s1 s2 s3

Pi1 Pi2 Pi3

s3 s3 s2

s1 s2 s3

s2 s1 s1

Objects

Fs1 Fs2 Fs3

i1 i2 i3

In Example 5, µT = {(i1, s1), (i2, s3), (i3, s2)} is the matching obtained from

the TTC algorithm. In the first round of the TTC algorithm, there is one cycle

where agent i2 points to object s3, object s3 points its owner i3, agent i3 points

to object s2 and object s2 points its owner i2. That is, C1 = {c1
1} with c1

1 =

(s3, i3, s2, i2). Agent i2 is assigned to object s3 and agent i3 is assigned to object

s2: m1
1 = {(i2, s3), (i3, s2)}, and so i2 and i3 exchange their objects. In the second

round of the TTC algorithm, there is only one leftover agent, i1, who points to

object s1 that she owns and one leftover object, s1, that points to its owner i1.

That is, C2 = {c1
2} with c1

2 = (s1, i1). Agent i1 is assigned to her own object s1:

m1
2 = {(i1, s1)}, and so µT = m1

1 ∪m1
2.

Roth and Postlewaite (1977) show that, for any matching problem 〈I, S, P, F 〉
where each agent i owns an object s, there is always a unique matching that is in

the core. Moreover, this matching can be obtained with the TTC algorithm.24

Definition 5. Let 〈I, S, P, F 〉 be a matching problem where each agent i owns an

object s. A horizon-k improving path from a matching µ ∈ M to a matching

µ′ ∈ M \ {µ} is a finite sequence of distinct matchings µ0, . . . , µL with µ0 = µ and

µL = µ′ such that for every l ∈ {0, . . . , L− 1} either

24For matching problems with private endowments, Ma (1994) shows that a mechanism is

strategy-proof, Pareto efficient and individually rational if and only if it uses the TTC algorithm.
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(i) µl+1 = µl − (i, s) + (i, i) for some (i, s) ∈ I × S such that µmin{l+k,L}(i)Piµl(i),

or

(ii) µl+1 = µl + (i, s)− (i, µl(i))−{(j, s) | µl(j) = s}+ {(j, j) | µl(j) = s} for some

(i, s) ∈ I × S such that µmin{l+k,L}(i)Piµl(i) and µmin{l+k,L}(is)Pisµl(is).

In the case of matching problems where each agent owns an object, we still

require that, along a horizon-k improving path, each time some agent i is on the

move she is better off at the match she will get k steps ahead on the sequence

compared to her current match. Moreover, if agent i matches to s, we also require

that the owner of the object (i.e. is) prefers the match he will get k steps ahead

compared to his current match. In other words, the owner of the object has a word

to say about the assignment of his endowment to some agent.25

The set of matchings µ′ ∈M such that there is a horizon-k improving path from

µ to µ′ is denoted by φ̃k(µ), so φ̃k(µ) = {µ′ ∈ M | µ →k µ
′}. Replacing φk(µ)

by φ̃k(µ) in Definition 2 we obtain the definition of a horizon-k vNM stable set for

matching problems where each agent owns an object.

Theorem 3. Let 〈I, S, P, F 〉 be a matching problem where each agent i owns an

object s and µT is the matching obtained from the TTC mechanism. The singleton

set {µT} is the unique horizon-k vNM stable set for k ≥ 3γ − 1.

Corollary 2. Let 〈I, S, P, F 〉 be a matching problem where each agent i owns an

object s and µT is the matching obtained from the TTC mechanism. The singleton

set {µT} is the unique vNM farsighted stable set.26

25The notion of contractual stability captures a similar idea by requiring the consent of coalition

partners. See e.g. Diamantoudi and Xue (2003), Caulier, Mauleon and Vannetelbosch (2013),

Caulier, Mauleon, Sempere-Monerris and Vannetelbosch (2013), Mauleon, Sempere-Monerris and

Vannetelbosch (2016).
26In an exchange economy with indivisible goods of Shapley and Scarf (1974), Kawasaki (2010)

as well as Klaus, Klijn and Walzl (2010) show that there exists a unique vNM farsighted stable

set, which coincides with the set of competitive allocations. Thus, they obtain a similar result to

Corollary 2 except that they allow for coalitional moves while agents can only move one at a time

in our definition of vNM farsighted stable set.
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6 Conclusion

We have considered one-to-one priority-based matching problems with limited far-

sightedness. We have shown that, once agents are sufficiently farsighted, the match-

ing obtained from the TTC algorithm becomes stable: a singleton set consisting

of the TTC matching is a horizon-k vNM stable set if the degree of farsighted-

ness is greater than three times the number of agents in the largest cycle of the

TTC. On the contrary, the matching obtained from the DA algorithm may not

belong to any horizon-k vNM stable set for k large enough. Hence, the TTC mecha-

nism satisfies Pareto efficiency, strategy-proofness and (limited) farsighted stability.

Notice that a mechanism is strategy-proof if no agent has incentives to misrepre-

sent her preferences anticipating perfectly the outcome of the TTC algorithm. So,

strategy-proofness implicitly presumes some degree of farsightedness on behalf of

the agents. Thus, it seems more consistent to look for a mechanism that satisfies

strategy-proofness together with (limited) farsighted stability.

Our main results are robust to alternative notions of limited farsightedness. How-

ever, they do not hold per se for many-to-one priority-based matching problems:

more coordination and cooperation on behalf of the agents is required. In match-

ing markets with couples, farsightedness may improve both efficiency and stability.

When each agent owns an object, a singleton set consisting of the TTC matching is

the unique horizon-k vNM stable set.

For future research it would be interesting to investigate whether soulmate mech-

anisms such as the iterated matching of soulmates algorithm (see Leo, Lou, Van der

Linden, Vorobeychik and Wooders, 2021) does satisfy farsighted stability.27
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A Appendix

A.1 Proof of Theorem 1

Proof. Since {µT} is a singleton set, internal stability (IS) is satisfied. (ES) Take

any matching µ 6= µT , we need to show that φk(µ) 3 µT for k ≥ (3γ − 1). We build

in steps a horizon-k improving path from µ to µT for k ≥ (3γ − 1). Remember that

µT =
⋃k̄

k=1Mk where Mk =
⋃Lk

l=1 m
l
k are all the matches between agents and objects

formed in Step k of the TTC algorithm, and ml
k is given by Expressions (1) and (2).

Step 1.1. If m1
1 ⊆ µ and 1 6= L1 then go to Step 1.2 with µ′′′1,1 = µ. If m1

1 ⊆ µ and 1 = L1

then go to Step 1.End with µ′′′1,L1
= µ. If m1

1 * µ then go to Step 1.1.A.

Step 1.1.A. If {(i, s) | i, s ∈ c1
1 and s 7→ i} ⊆ µ then go to Step 1.1.B with µ′1,1 = µ.

If {(i, s) | i, s ∈ c1
1 and s 7→ i} * µ then there is some agent i such that

s 6= µ(i) 6= µT (i) and s 7→ i with i, s ∈ c1
1. This agent i matches with object

s that ranks her first on its priority list. We reach the matching µ′1,1,1 =

µ + (i, s) − (i, µ(i)) − {(j, s) | µ(j) = s} + {(j, j) | µ(j) = s} where s 7→ i

and i, s ∈ c1
1. If {(i, s) | i, s ∈ c1

1 and s 7→ i} ⊆ µ′1,1,1 then go to Step 1.1.B

with µ′1,1 = µ′1,1,1. If {(i, s) | i, s ∈ c1
1 and s 7→ i} * µ′1,1,1 then there is some

agent i′ such that s′ 6= µ′1,1,1(i′) 6= µT (i′) and s′ 7→ i′ with i′, s′ ∈ c1
1. This

agent i′ matches with object s′ that ranks her first on its priority list. We

reach the matching µ′1,1,2 = µ′1,1,1 + (i′, s′)− (i′, µ′1,1,1(i′))− {(j, s′) | µ′1,1,1(j) =

s′}+ {(j, j) | µ′1,1,1(j) = s′} where s′ 7→ i′ and i′, s′ ∈ c1
1. We proceed as above

until we reach the matching µ′1,1 = µ+{(i, s) | i, s ∈ c1
1 and s 7→ i}−{(i, µ(i)) |

i, s ∈ c1
1 and s 7→ i} − {(j, s) | j /∈ c1

1, i, s ∈ c1
1, s 7→ i and µ(s) = j}+ {(j, j) |

j /∈ c1
1, i, s ∈ c1

1, s 7→ i and µ(s) = j} where each agent involved in c1
1 is

matched to the object that ranks her first on its priority list. Step 1.1.A

counts at most c̄1
1 steps.

Step 1.1.B. Let I1
1 = {(ir)}c̄

1
1
r=1 be such that ir ∈ c1

1 and ir = ior 6= ir+1 = ior+1 with

or < or+1 for r = 1, ..., c̄1
1 − 1. That is, I1

1 is an ordered set of the agents

involved in cycle c1
1 where c̄1

1 = #{i ∈ I | i ∈ c1
1} is the number of agents

involved in cycle c1
1. From the matching µ′1,1, agents i1 to ic̄

1
1−1 successively
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leave their objects to reach the matching µ′′1,1 = µ′1,1 − {(i, s) | i, s ∈ c1
1, s 7→

i and i 6= ic̄
1
1} + {(i, i) | i, s ∈ c1

1, s 7→ i and i 6= ic̄
1
1} where only agent ic̄

1
1 is

still matched to the object that ranks her first on its priority list. Step 1.1.B

counts at most c̄1
1 − 1 steps.

Step 1.1.C. From the matching µ′′1,1, agent ic̄
1
1 first matches with her top choice object

s to reach the matching µ′′1,1 + (ic̄
1
1 , s) − (ic̄

1
1 , µ′′1,1(ic̄

1
1)) where s is such that

i 7→ s and i, s ∈ c1
1. Notice that s was unassigned at µ′′1,1 while the object that

ranks ic̄
1
1 first on its priority list, i.e. µ′′1,1(ic̄

1
1), is now unassigned. Next, agents

i1 to ic̄
1
1−1 successively match to their top choice object to reach the matching

µ′′′1,1 = µ′1,1 − {(i, s) | i, s ∈ c1
1 and s 7→ i} + {(i, s) | i, s ∈ c1

1 and i 7→ s}.
Step 1.1.C counts at most c̄1

1 steps. We have reached µ′′′1,1 with m1
1 ⊆ µ′′′1,1

and so agents belonging to c1
1 are assigned to the same object as in µT and

they obtain their best possible match. Step 1.1 counts at most 3c̄1
1 − 1 steps.

Hence, it is sufficient that the agents who move in Step 1.1 look forward 3c̄1
1−1

steps ahead to have incentives for engaging the move towards the matching

µ′′′1,1 where they already get the object assigned by the TTC. Once they reach

those matches they do not move afterwards. If 1 6= L1, then go to Step 1.2.

Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.l. (l > 1) If ml
1 ⊆ µ′′′1,l−1 and l 6= L1 then go to Step 1.l+1 with µ′′′1,l = µ′′′1,l−1.

If ml
1 ⊆ µ′′′1,l−1 and l = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,l−1. If

ml
1 * µ′′′1,l−1 then go to Step 1.l.A.

Step 1.l.A. If {(i, s) | i, s ∈ cl1 and s 7→ i} ⊆ µ′′′1,l−1 then go to Step 1.l.B with µ′1,l = µ′′′1,l−1.

If {(i, s) | i, s ∈ cl1 and s 7→ i} * µ′′′1,l−1 then there is some agent i such that

s 6= µ′′′1,l−1(i) 6= µT (i) and s 7→ i with i, s ∈ cl1. This agent i matches with

object s that ranks her first on its priority list. We reach the matching µ′1,l,1 =

µ′′′1,l−1 + (i, s) − (i, µ′′′1,l−1(i)) − {(j, s) | µ′′′1,l−1(j) = s} + {(j, j) | µ′′′1,l−1(j) = s}
where s 7→ i and i, s ∈ cl1. If {(i, s) | i, s ∈ cl1 and s 7→ i} ⊆ µ′1,l,1 then go to

Step 1.l.B with µ′1,l = µ′1,l,1. If {(i, s) | i, s ∈ cl1 and s 7→ i} * µ′1,l,1 then there

is some agent i′ such that s′ 6= µ′1,l,1(i′) 6= µT (i′) and s′ 7→ i′ with i′, s′ ∈ cl1.

This agent i′ matches with object s′ that ranks her first on its priority list. We

reach the matching µ′1,l,2 = µ′1,l,1 + (i′, s′) − (i′, µ′1,l,1(i′)) − {(j, s′) | µ′1,l,1(j) =

s′} + {(j, j) | µ′1,l,1(j) = s′} where s′ 7→ i′ and i′, s′ ∈ cl1. We proceed as

above until we reach the matching µ′1,l = µ′′′1,l−1 + {(i, s) | i, s ∈ cl1 and s 7→
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i} − {(i, µ′′′1,l−1(i)) | i, s ∈ cl1 and s 7→ i} − {(j, s) | j /∈ cl1, i, s ∈ cl1, s 7→
i and µ′′′1,l−1(s) = j}+ {(j, j) | j /∈ cl1, i, s ∈ cl1, s 7→ i and µ′′′1,l−1(s) = j} where

each agent involved in cl1 is matched to the object that ranks her first on its

priority list. Step 1.l.A counts at most c̄l1 steps.

Step 1.l.B. Let I l1 = {(ir)}c̄
l
1
r=1 be such that ir ∈ cl1 and ir = ior 6= ir+1 = ior+1 with

or < or+1 for r = 1, ..., c̄l1 − 1. That is, I l1 is an ordered set of the agents

involved in cycle cl1 where c̄l1 = #{i ∈ I | i ∈ cl1} is the number of agents

involved in cycle cl1. From the matching µ′1,l, agents i1 to ic̄
l
1−1 successively

leave their objects to reach the matching µ′′1,l = µ′1,l − {(i, s) | i, s ∈ cl1, s 7→
i and i 6= ic̄

l
1} + {(i, i) | i, s ∈ cl1, s 7→ i and i 6= ic̄

l
1} where only agent ic̄

l
1 is

still matched to the object that ranks her first on its priority list. Step 1.l.B

counts at most c̄l1 − 1 steps.

Step 1.l.C. From the matching µ′′1,l, agent ic̄
l
1 first matches with her top choice object

s to reach the matching µ′′1,l + (ic̄
l
1 , s) − (ic̄

l
1 , µ′′1,l(i

c̄l1)) where s is such that

i 7→ s and i, s ∈ cl1. Notice that s was unassigned at µ′′1,l while the object that

ranks ic̄
l
1 first on its priority list, i.e. µ′′1,l(i

c̄l1), is now unassigned. Next, agents

i1 to ic̄
l
1−1 successively match to their top choice object to reach the matching

µ′′′1,l = µ′′1,l − {(i, s) | i, s ∈ cl1 and s 7→ i} + {(i, s) | i, s ∈ cl1 and i 7→ s}.
Step 1.l.C counts at most c̄l1 steps. We have reached µ′′′1,l with ml

1 ⊆ µ′′′1,l and

so agents belonging to cl1 are assigned to the same object as in µT . Step 1.l

counts at most 3c̄l1 − 1 steps. Hence, it is sufficient that the agents who move

in Step 1.l look forward 3c̄l1−1 steps ahead to have incentives for engaging the

move towards the matching µ′′′1,l where they already get the object assigned

by the TTC. Once they reach those matches they do not move afterwards. If

1 6= L1, then go to Step 1.l+ 1. Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,l.

Step 1.End. We have reached µ′′′1,L1
with ∪L1

l=1m
l
1 = M1 ⊆ µ′′′1,L1

. If µ′′′1,L1
= µT then the

process ends. Otherwise, go to Step 2.1.

Step k.1. (k ≥ 2) If m1
k ⊆ µ′′′k−1,Lk−1

and 1 6= Lk then go to Step k.2 with µ′′′k,1 = µ′′′k−1,Lk−1
.

If m1
k ⊆ µ′′′k−1,Lk−1

and 1 = Lk then go to Step k.End with µ′′′k,Lk
= µ′′′k−1,Lk−1

.

If m1
k * µ′′′k−1,Lk−1

then go to Step k.1.A.

Step k.1.A. If {(i, s) | i, s ∈ c1
k and s 7→ i} ⊆ µ′′′k−1,Lk−1

then go to Step k.1.B with

µ′k,1 = µ′′′k−1,Lk−1
. If {(i, s) | i, s ∈ c1

k and s 7→ i} * µ′′′k−1,Lk−1
then there is
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some agent i such that s 6= µ′′′k−1,Lk−1
(i) 6= µT (i) and s 7→ i with i, s ∈ c1

k.

This agent i matches with object s ∈ S \
⋃k−1

l=1 Sl that ranks her first on its

priority list among agents belonging to I \
⋃k−1

l=1 Il. We reach the match-

ing µ′k,1,1 = µ′′′k−1,Lk−1
+ (i, s) − (i, µ′′′k−1,Lk−1

(i)) − {(j, s) | µ′′′k−1,Lk−1
(j) =

s} + {(j, j) | µ′′′k−1,Lk−1
(j) = s} where s 7→ i and i, s ∈ c1

k. If {(i, s) |
i, s ∈ c1

k and s 7→ i} ⊆ µ′k,1,1 then go to Step k.1.B with µ′k,1 = µ′k,1,1.

If {(i, s) | i, s ∈ c1
k and s 7→ i} * µ′k,1,1 then there is some agent i′ such

that s′ 6= µ′k,1,1(i′) 6= µT (i′) and s′ 7→ i′ with i′, s′ ∈ c1
k. This agent i′

matches with object s′ ∈ S \
⋃k−1

l=1 Sl that ranks her first on its priority

list among agents belonging to I \
⋃k−1

l=1 Il. We reach the matching µ′k,1,2 =

µ′k,1,1 + (i′, s′)− (i′, µ′k,1,1(i′))−{(j, s′) | µ′k,1,1(j) = s′}+ {(j, j) | µ′k,1,1(j) = s′}
where s′ 7→ i′ and i′, s′ ∈ c1

k. We proceed as above until we reach the match-

ing µ′k,1 = µ′′′k−1,Lk−1
+ {(i, s) | i, s ∈ c1

k and s 7→ i} − {(i, µ′′′k−1,Lk−1
(i)) | i, s ∈

c1
k and s 7→ i}−{(j, s) | j /∈ c1

k, i, s ∈ c1
k, s 7→ i and µ′′′k−1,Lk−1

(s) = j}+{(j, j) |
j /∈ c1

k, i, s ∈ c1
k, s 7→ i and µ′′′k−1,Lk−1

(s) = j} where each agent involved in c1
k

is matched to the object that ranks her first on its priority list among agents

belonging to I \
⋃k−1

l=1 Il. Step k.1.A counts at most c̄k1 steps.

Step k.1.B. Let I1
k = {(ir)}c̄

1
k
r=1 be such that ir ∈ c1

k and ir = ior 6= ir+1 = ior+1 with

or < or+1 for r = 1, ..., c̄1
k − 1. That is, I1

k is an ordered set of the agents

involved in cycle c1
k where c̄1

k = #{i ∈ I | i ∈ c1
k} is the number of agents

involved in cycle c1
k. From the matching µ′k,1, agents i1 to ic̄

1
k−1 successively

leave their objects to reach the matching µ′′k,1 = µ′k,1 − {(i, s) | i, s ∈ c1
k, s 7→

i and i 6= ic̄
1
k} + {(i, i) | i, s ∈ c1

k, s 7→ i and i 6= ic̄
1
k} where only agent ic̄

1
k is

still matched to the object that ranks her first on its priority list among agents

belonging to I \
⋃k−1

l=1 Il. Step k.1.B counts at most c̄k1 − 1 steps.

Step k.1.C. From the matching µ′′k,1, agent ic̄
1
k first matches with her top choice object

s ∈ S \
⋃k−1

l=1 Sl to reach the matching µ′′k,1 + (ic̄
1
k , s) − (ic̄

1
k , µ′′k,1(ic̄

1
k)) where s

is such that i 7→ s and i, s ∈ ck1. Notice that s was unassigned at µ′′k,1 while

the object that ranks ic̄
1
k first on its priority list among agents belonging to

I\
⋃k−1

l=1 Il, i.e. µ′′k,1(ic̄
1
k), is now unassigned. Next, agents i1 to ic̄

1
k−1 successively

match to their top choice object in S \
⋃k−1

l=1 Sl to reach the matching µ′′′k,1 =

µ′k,1 − {(i, s) | i, s ∈ c1
k and s 7→ i} + {(i, s) | i, s ∈ c1

k and i 7→ s}. Step 2.1.C

counts at most c̄1
k steps. We have reached µ′′′k,1 with m1

k ⊆ µ′′′k,1 and so agents
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belonging to c1
k are assigned to the same object as in µT . Step k.1 counts at

most 3c̄1
k − 1 steps. Hence, it is sufficient that the agents who move in Step

k.1 look forward 3c̄1
k − 1 steps ahead to have incentives for engaging the move

towards the matching µ′′′k,1 where they already get the object assigned by the

TTC. Once they reach those matches they do not move afterwards. If 1 6= Lk,

then go to Step k.2. Otherwise, go to Step k.End with µ′′′k,Lk
= µ′′′k,1.

Step k.l. (l > 1) If ml
k ⊆ µ′′′k,l−1 and l 6= Lk then go to Step k.l+1 with µ′′′k,l = µ′′′k,l−1.

If ml
k ⊆ µ′′′k,l−1 and l = Lk then go to Step k.End with µ′′′k,Lk

= µ′′′k,l−1. If

ml
k * µ′′′k,l−1 then go to Step k.l.A.

Step k.l.A If {(i, s) | i, s ∈ clk and s 7→ i} ⊆ µ′′′k,l−1 then go to Step k.l.B with µ′k,l = µ′′′k,l−1.

If {(i, s) | i, s ∈ clk and s 7→ i} * µ′′′k,l−1 then there is some agent i such that

s 6= µ′′′k,l−1(i) 6= µT (i) and s 7→ i with i, s ∈ clk. This agent i matches with

object s that ranks her first on its priority list among agents belonging to

I \
⋃k−1

l=1 Il. We reach the matching µ′k,l,1 = µ′′′k,l−1 + (i, s) − (i, µ′′′k,l−1(i)) −
{(j, s) | µ′′′k,l−1(j) = s} + {(j, j) | µ′′′k,l−1(j) = s} where s 7→ i and i, s ∈ clk. If

{(i, s) | i, s ∈ clk and s 7→ i} ⊆ µ′k,l,1 then go to Step k.l.B with µ′k,l = µ′k,l,1.

If {(i, s) | i, s ∈ clk and s 7→ i} * µ′k,l,1 then there is some agent i′ such

that s′ 6= µ′k,l,1(i′) 6= µT (i′) and s′ 7→ i′ with i′, s′ ∈ clk. This agent i′ matches

with object s′ that ranks her first on its priority list among agents belonging to

I\
⋃k−1

l=1 Il. We reach the matching µ′k,l,2 = µ′k,l,1+(i′, s′)−(i′, µ′k,l,1(i′))−{(j, s′) |
µ′k,l,1(j) = s′}+{(j, j) | µ′k,l,1(j) = s′} where s′ 7→ i′ and i′, s′ ∈ clk. We proceed

as above until we reach the matching µ′k,l = µ′′′k,l−1 + {(i, s) | i, s ∈ clk and s 7→
i} − {(i, µ′′′k,l−1(i)) | i, s ∈ clk and s 7→ i} − {(j, s) | j /∈ clk, i, s ∈ clk, s 7→
i and µ′′′k,l−1(s) = j}+ {(j, j) | j /∈ clk, i, s ∈ clk, s 7→ i and µ′′′k,l−1(s) = j} where

each agent involved in clk is matched to the object that ranks her first on its

priority list among agents belonging to I \
⋃k−1

l=1 Il. Step 2.l.A counts at most

c̄lk steps.

Step k.l.B. Let I lk = {(ir)}c̄
l
k
r=1 be such that ir ∈ clk and ir = ior 6= ir+1 = ior+1 with

or < or+1 for r = 1, ..., c̄lk − 1. That is, I lk is an ordered set of the agents

involved in cycle clk where c̄lk = #{i ∈ I | i ∈ clk} is the number of agents

involved in cycle clk. From the matching µ′k,l, agents i1 to ic̄
l
k−1 successively

leave their objects to reach the matching µ′′k,l = µ′k,l − {(i, s) | i, s ∈ clk, s 7→
i and i 6= ic̄

l
k} + {(i, i) | i, s ∈ clk, s 7→ i and i 6= ic̄

l
k} where only agent ic̄

l
k is
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still matched to the object that ranks her first on its priority list among agents

belonging to I \
⋃k−1

l=1 Il. Step k.l.B counts at most c̄lk − 1 steps.

Step k.l.C. From the matching µ′′k,l, agent ic̄
l
k first matches with her top choice object

s ∈ S \
⋃k−1

l=1 Sl to reach the matching µ′′k,l + (ic̄
l
k , s) − (ic̄

l
k , µ′′k,l(i

c̄lk)) where s

is such that i 7→ s and i, s ∈ clk. Notice that s was unassigned at µ′′k,l while

the object that ranks ic̄
l
k first on its priority list among agents belonging to

I\
⋃k−1

l=1 Il, i.e. µ′′k,l(i
c̄lk), is now unassigned. Next, agents i1 to ic̄

l
k−1 successively

match to their top choice object in S \
⋃k−1

l=1 Sl to reach the matching µ′′′k,l =

µ′k,l − {(i, s) | i, s ∈ clk and s 7→ i} + {(i, s) | i, s ∈ clk and i 7→ s}. Step k.l.C

counts at most c̄lk steps. We have reached µ′′′k,l with ml
k ⊆ µ′′′k,l and so agents

belonging to clk are assigned to the same object as in µT . Step k.l counts at

most 3c̄lk − 1 steps. Hence, it is sufficient that the agents who move in Step

k.l look forward 3c̄lk − 1 steps ahead to have incentives for engaging the move

towards the matching µ′′′k,l where they already get the object assigned by the

TTC. Once they reach those matches they do not move afterwards. If 1 6= Lk,

then go to Step k.l + 1. Otherwise, go to Step k.End with µ′′′k,Lk
= µ′′′k,l.

Step k.End. We have reached µ′′′k,Lk
with

⋃k
k′=1Mk′ ⊆ µ′′′k,Lk

. If µ′′′k,Lk
= µT then the process

ends. Otherwise, go to Step k + 1.1.

End. The process goes on until Step k̄ where we reach µ′′′
k̄,Lk̄

=
⋃k̄

k=1Mk = µT .

Given k ≥ 3γ − 1, we have that, along the constructed horizon-k improving

path, each time an agent i is on the move she has incentives to do so since her

end match (i.e. her TTC match µT (i)) is within her horizon.

A.2 Tighter bound on k

We now look whether one could find a tighter bound on k such that for all k′ ≥ k, the

singleton set {µT} is a horizon-k′ vNM stable set. Consider the proof of Theorem 1.

At the end of Step 1.1.A we reach the matching µ′1,1 = µ+{(i, s) | i, s ∈ c1
1 and s 7→

i} − {(i, µ(i)) | i, s ∈ c1
1 and s 7→ i} − {(j, s) | j /∈ c1

1, i, s ∈ c1
1, s 7→ i and µ(s) =

j}+{(j, j) | j /∈ c1
1, i, s ∈ c1

1, s 7→ i and µ(s) = j} where each agent involved in c1
1 is

matched to the object that ranks her first on its priority list. Remember that Step
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1.1.A counts at most c̄1
1 steps where c̄1

1 = #{i ∈ I | i ∈ c1
1} is the number of agents

involved in cycle c1
1. We slightly modify Step 1.1.B as follows.

Step 1.1.B Let Ī1
1 = {(il)}c̄

1
1
l=1 be an ordered set of the agents involved in cycle c1

1 such

that il ∈ c1
1 and il matches before il+1 to the object that ranks her first on

its priority list in Step 1.1.A, for l = 1, ..., c̄1
1 − 1. Agents who were already

matched (at the beginning of Step 1.1.A ) to the objects that rank them first

on their priority lists occupy the first positions of Ī1
1 . From the matching µ′1,1,

agents i1 to ic̄
1
1−1 successively leave their objects to reach the matching µ′′1,1 =

µ′1,1−{(i, s) | i, s ∈ c1
1, s 7→ i and i 6= ic̄

1
1}+{(i, i) | i, s ∈ c1

1, s 7→ i and i 6= ic̄
1
1}

where only agent ic̄
1
1 is still matched to the object that ranks her first on its

priority list. Step 1.1.B counts at most c̄1
1 − 1 steps.

Step 1.1.C. From the matching µ′′1,1, agent ic̄
1
1 first matches with her top choice object

s to reach the matching µ′′1,1 + (ic̄
1
1 , s) − (ic̄

1
1 , µ′′1,1(ic̄

1
1)) where s is such that

i 7→ s and i, s ∈ c1
1. Notice that s was unassigned at µ′′1,1 while the object that

ranks ic̄
1
1 first on its priority list, i.e. µ′′1,1(ic̄

1
1), is now unassigned. Next, agents

i1 to ic̄
1
1−1 successively match to their top choice object to reach the matching

µ′′′1,1 = µ′′1,1 − {(i, s) | i, s ∈ c1
1 and s 7→ i} + {(i, s) | i, s ∈ c1

1 and i 7→ s}. Step

1.1.C counts at most c̄1
1 steps. We have reached µ′′′1,1 with m1

1 ⊆ µ′′′1,1 and so

agents belonging to c1
1 are assigned to the same object as in µT . If 1 6= L1,

then go to Step 1.2. Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.1 counts at most 3c̄1
1 − 1 steps. Since we use now the order in which the

agents are matched to the objects that rank them first on their priority lists in Step

1.1.A, there is at most 2c̄1
1 +1 steps between the first move of an agent in Step 1.1.A

and her final move in Step 1.1.C. Hence, it becomes sufficient that the agents who

move in Step 1.1 look forward 2c̄1
1 + 1 steps ahead to have incentives for engaging

the move towards the matching µ′′′1,1 where they already get the object assigned by

the TTC. Once they reach those matches they do not move afterwards.

Thus, the lower bound k = 2γ+1 is a tighter bound on k such that for all k′ ≥ k,

the singleton set {µT} is a horizon-k′ vNM stable set.

A.3 Horizon-L farsighted set

The notion of a horizon-L farsighted set of matchings is obtained by adapting Her-

ings, Mauleon and Vannetelbosch (2019) definition of a horizon-L farsighted set of
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networks to priority-based matching problems.

Definition 6. Let 〈I, S, P, F 〉 be a priority-based matching problem. A farsighted

improving path of length L from a matching µ ∈ M to a matching µ′ ∈ M \ {µ}
is a finite sequence of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such

that for every l ∈ {0, . . . , L− 1} either

(i) µl+1 = µl − (i, s) + (i, i) for some (i, s) ∈ I × S such that µL(i)Piµl(i), or

(ii) µl+1 = µl + (i, s)− (i, µl(i))−{(j, s) | µl(j) = s}+ {(j, j) | µl(j) = s} for some

(i, s) ∈ I × S such that µL(i)Piµl(i) and Fs(i) < Fs(j) if µl(s) = j.

If there exists a farsighted improving path of length L from µ to µ′, then we

write µ −→L µ′. For a given matching µ and some L′ ≥ 1, let φ̂L′(µ) be the

set of matchings that can be reached from µ by a farsighted improving path of

length L ≤ L′. That is, φ̂L′(µ) = {µ′ ∈ M | ∃L ≤ L′ such that µ −→L µ′}. Let

φ̂∞(µ) = {µ′ ∈ M | ∃L ∈ N such that µ −→L µ′} = φ∞(µ) denote the set of

matchings that can be reached from µ by some farsighted improving path. From

Lemma 1 in Herings, Mauleon and Vannetelbosch (2019) we have that for every

L ≥ 1, for every µ ∈ M, it holds that φ̂L(µ) ⊆ φ̂L+1(µ), and that for L ≥ k?, for

every µ ∈M, it holds that φ̂L(µ) = φ̂L+1(µ) = φ̂∞(µ) = φ∞(µ).

The set φ̂2
L(µ) = φ̂L(φ̂L(µ)) = {µ′′ ∈ M | ∃µ′ ∈ φ̂L(µ) such that µ′′ ∈ φ̂L(µ′)}

consists of those matchings that can be reached by a composition of two farsighted

improving paths of length at most L from µ. For m ∈ N, let φ̂m
L (µ) be the matchings

that can be reached from µ by means of m compositions of farsighted improving

paths of length at most L. Let φ̂∞L denote the set of matchings that can be reached

from µ by means of any number of compositions of farsighted improving paths of

length at most L.28

The notion of a horizon-L farsighted set is based on two main requirements:

horizon-L deterrence of external deviations and horizon-L external stability.

Definition 7. For L ≥ 1, a set of matchings V ⊆M satisfies horizon-L deterrence

of external deviations if for every µ ∈ V ,29

28From Lemma 2 in Herings, Mauleon and Vannetelbosch (2019) we have that for every L ≥ 1,

for every µ ∈ M, it holds that φ̂∞L (µ) ⊆ φ̂∞L+1(µ), and that for L ≥ k?, for every µ ∈ M, it holds

that φ̂∞L (µ) = φ̂∞L+1(µ) = φ̂∞∞(µ).
29We use the notational convention that φ̂−1(µ) = ∅ for every µ ∈M.
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(i) ∀ (i, s) /∈ µ such that µ̃ = µ + (i, s) − (i, µ(i)) − {(j, s) | µ(j) = s} + {(j, j) |
µ(j) = s} and µ̃ /∈ V , either there exists µ′ ∈ [φ̂L−2(µ̃)∩V ]∪[φ̂L−1(µ̃)\φ̂L−2(µ̃)]

such that µRiµ
′, or Fs(i) > Fs(j) if µ(s) = j,

(ii) ∀ (i, s) ∈ µ such that µ̃ = µ − (i, s) + (i, i) and µ̃ /∈ V , there exists µ′ ∈
[φ̂L−2(µ̃) ∩ V ] ∪ [φ̂L−1(µ̃) \ φ̂L−2(µ̃)] such that µRiµ

′.

Definition 7 captures that forming the match (i, s) at µ ∈ V and reaching a

matching µ̃ outside of V , is deterred by the threat of ending in µ′. Here µ′ is such

that either there is a farsighted improving path of length smaller than or equal to

L − 2 from µ̃ to µ′ and µ′ belongs to V or there is a farsighted improving path of

length equal to L − 1 from µ̃ to µ′ and there is no farsighted improving path from

µ̃ to µ′ of smaller length.

Definition 8. For L ≥ 1, a set of matchings V ⊆ M satisfies horizon-L external

stability if for every µ′ ∈M \ V , φ̂∞L (µ′) ∩ V 6= ∅.

Definition 9. For L ≥ 1, a set of matchings V ⊆ M is a horizon-L farsighted

set if it is a minimal set satisfying horizon-L deterrence of external deviations and

horizon-L external stability.

Proof of Theorem 2. Take L ≥ 3γ. We show that {µT} is a horizon-L farsighted

set. First, {µT} is a minimal set. Second, {µT} satisfies horizon-L deterrence of

external deviations. Any deviation from µT to µ̃ = µT − (i, µT (i)) + (i, i) is deterred

since agent i is worse off at µ̃ where µ̃(i) = i. An agent i may only have incentives to

deviate from µT to µ̃ = µT +(i, s)−(i, µ(i))−{(j, s) | µ(j) = s}+{(j, j) | µ(j) = s} if

she matches to an object s that was assigned in µT to some agent j who belongs to a

cycle formed before agent i’s cycle in the TTC algorithm. Hence, any deviation from

µT to µ̃ = µT +(i, s)−(i, µ(i))−{(j, s) | µ(j) = s}+{(j, j) | µ(j) = s} can be deterred

since µT − (i, µT (i)) + (i, i) ∈ φ̂L−1(µ̃) and µT ∈ φ̂L−1(µ̃). Indeed, from µ̃ the agents

belonging to agent j’s cycle in the TTC algorithm can simply follow the steps of

Theorem 1’s proof to reach µT −(i, µT (i))+(i, i), and this farsighted improving path

counts at most 3γ− 1 moves. For L > 3γ, µT ∈ φ̂L−1(µ̃) since agent i has incentives

to match to s = µT (i) at µT − (i, µT (i))+(i, i). Third, the horizon-k improving path

from Theorem 1’s proof can be decomposed in a succession of farsighted improving

paths of length smaller than or equal to 3γ−1 where each farsighted improving path

consists of the formation of the matches between the agents belonging to the same

31



cycle in the TTC algorithm. Hence, for every µ ∈ M \ {µT}, µT ∈ φ̂∞L (µ), and so

{µT} satisfies horizon-L external stability.

A.4 Proof of Proposition 1

Proof. Since {µ?} is a singleton set, internal stability (IS) is satisfied. (ES) Take

any matching µ 6= µ?, we need to show that φk(µ) 3 µ? for k ≥ 2n + 2. We build

in steps a horizon-k improving path from µ to µ? for k ≥ 2n + 2. We consider two

cases.

(1) Take µ 6= µ? such that the couple (i?, c(i?)) does not obtain their most preferred

matches. From µ, looking forward k steps ahead, agent i? matches successively

with each object s 6= µ?(i?) that was assigned to some agent j 6= c(i?) under

µ (i.e. µ(s) ∈ I, µ(s) 6= c(i?)) to reach µ′. Next, agent i? matches with µ?(i?)

to reach the matching µ′′ where µ′′(i?) = µ?(i?), µ′′(c(i?)) = µ(c(i?)) and

µ′′(i) = i for all i ∈ I, i 6= i?, c(i?). Next, if µ′′(c(i?)) 6= µ?(c(i?)), agent c(i?)

matches with µ?(c(i?)). Next, each i ∈ I (i 6= i?) matches one by one to the

object she is assigned to in µ?. Hence, µ? ∈ φk(µ).

(2) Take µ 6= µ? such that the couple (i?, c(i?)) obtains their most preferred

matches. Since µ? is Pareto efficient there is some couple (j, c(j)) that prefers

µ? to µ.

(2.a) If µ(j) 6= j (or µ(c(j)) 6= c(j)) then, looking forward k step ahead, agent

i? and agent j if µ(j) 6= j (or agent c(j) if µ(c(j)) 6= c(j)) give up their objects

to reach µ′ where µ′(i?) = i? and µ′(j) = j. The couple (j, c(j)) strictly prefers

µ? to µ while couple (i?, c(i?)) is indifferent. In µ′ 6= µ?, the couple (i?, c(i?))

does not obtain their most preferred matches; and so we proceed as in (1) to

reach µ?. Hence, µ? ∈ φk(µ).

(2.b) Assume now that there is no couple that prefers µ? to µ and one of the

partner is assigned to some object in µ. So, µ(j) = j and µ(c(j)) = c(j)

for every couple (j, c(j)) that prefers µ? to µ (i.e., both members of couple

(j, c(j)) are unassigned in µ). Then, there is at least one agent j and some

unassigned object s in µ (i.e. #{i ∈ I | (i, s) ∈ µ} = 0) such that the couple

(j, c(j)) prefers µ? to µ′ = µ+(j, s). Otherwise, µ? would be Pareto dominated,
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contradicting the assumption that µ? is Pareto efficient. In µ′ 6= µ?, the couple

(i?, c(i?)) obtains their most preferred matches and µ′(j) 6= j for some couple

(j, c(j)) that prefers µ? to µ′. From µ′ we proceed as in (2.a) to reach µ?.

Hence, µ? ∈ φk(µ).

A.5 Proof of Theorem 3

Proof. From the proof of Theorem 1 it follows that {µT} is a horizon-k vNM stable

set for k ≥ 3γ − 1.30 We now show that {µT} is the unique horizon-k vNM stable

set for k ≥ 3γ − 1 since φ̃k(µT ) = ∅. Consider any cycle that is obtained in the

first step of the TTC algorithm. All the agents involved in this cycle obtain their

most preferred object in µT and, in this cycle, any agent obtains the endowment

of another agent who is also in the cycle. Hence, from µT they will never engage

a move towards another matching. Consider now any cycle that is obtained in the

second step of the TTC algorithm. Taking as fixed the matches done in µT by all

agents involved in any cycle of the first step of the TTC, all the agents involved in

this cycle of the second step of the TTC obtain their most preferred object in µT

and, in this cycle, any agent obtains the endowment of another agent who is also

in the cycle. Knowing that agents from any cycle of the first step of the TTC will

never engage a move, agents from any cycle of the second step of the TTC will never

engage either a move from µT towards another matching. Repeating this argument

with the matches found in steps 3, 4, . . . of the TTC leads to the conclusion that

φ̃k(µT ) = ∅. Hence, any set V 6= {µT} would violate (ES) or (IS), and so {µT} is

the unique horizon-k vNM stable set for k ≥ 3γ − 1.

References
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