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Abstract

We consider priority-based school choice problems with farsighted stu-

dents. We show that a singleton set consisting of the matching obtained from

the Top Trading Cycles (TTC) mechanism is a farsighted stable set. How-

ever, the matching obtained from the Deferred Acceptance (DA) mechanism

may not belong to any farsighted stable set. Hence, the TTC mechanism

provides an assignment that is not only Pareto efficient but also farsightedly

stable. Moreover, looking forward three steps ahead is already sufficient for

stabilizing the matching obtained from the TTC. In addition, we show that

variations of TTC that improve in terms of no justified envy are farsightedly

stable, but may require more farsightedness on behalf of students.
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1 Introduction

Abdulkadiroğlu and Sönmez (2003) formulate the school choice problem of assign-

ing students to schools as a mechanism design problem.1 Each student has strict

preferences over all schools and each school has a strict priority ordering imposed

by state or local laws of all students. The outcome of a school choice problem is

a matching that assigns schools to students such that each student is assigned at

most one school and no school is assigned to more students than its capacity. Two

prominent mechanisms used for priority-based matching are the Gale and Shapley’s

(1962) Deferred Acceptance (DA) mechanism and the Shapley and Scarf’s (1974)

Top Trading Cycles (TTC) mechanism. Both mechanisms are strategy-proof: truth-

ful preference revelation is a weakly dominant strategy for students.2 On the one

hand, the TTC mechanism is Pareto efficient while the DA mechanism may select

an inefficient matching. On the other hand, the DA mechanism is stable while the

TTC mechanism may select an unstable matching.

A stable matching in the context of school choice eliminates justified envy in

the sense that there is no unmatched student-school pair (i, s) where student i

prefers school s to her assignment and she has higher priority than some other

student who is assigned a seat at school s. Since only the preferences of students

matters in the context of school choice, the stable matching that results from the

DA Mechanism Pareto dominates any other matching that eliminates justified envy

and is strategy-proof. However, this matching may still be Pareto-dominated.3 A

Pareto efficient and strategy-proof matching is obtained by the TTC mechanism.

There is no mechanism that is both Pareto efficient and stable.4

Experimental and empirical studies suggest that individuals often differ in their

degree of farsightedness, i.e., their ability to forecast how others will react to the

1Abdulkadiroğlu and Anderson (2023) provide an extensive survey of school choice. See also

Roth and Sotomayor (1990) or Haeringer (2017) for an introduction to matching problems.
2Reny (2022) introduces the Priority-Efficient (PE) mechanism that always selects a Pareto

efficient matching that dominates the DA stable matching, but PE is not strategy-proof. Another

attempt to improve the efficiency of the DA mechanism can be found in Kesten (2010).
3Doğan and Ehlers (2021) characterize the priority profiles for which there exists a Pareto

improvement over the DA matching that is minimally unstable among Pareto efficient matchings.
4See e.g. Roth (1982). Che and Tercieux (2019) show that both Pareto efficiency and stability

can be achieved asymptotically using DA and TTC mechanisms when agents have uncorrelated

preferences.
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decisions they take. Recent experiments on network formation provide evidence

in favour of a mixed population consisting of both myopic and (limited) farsighted

individuals (see Kirchsteiger, Mantovani, Mauleon and Vannetelbosch, 2016; Tetery-

atnikova and Tremewan, 2020). The degree of farsightedness of an individual is likely

to be correlated with her level of education or cognitive ability (see Mauersberger

and Nagel, 2018). Basteck and Mantovani (2018) test in the lab subjects’ cognitive

ability and compare their allocation to schools under the Immediate Acceptance

(IA) and the Deferred Acceptance mechanisms. They show that, under the manip-

ulable IA mechanism, subjects of high cognitive ability earn higher payoffs than low

ability subjects and that substantial ability segregation may result, with the top

school enrolling up to 45 percent more high ability students than the worst school.

The aim of this paper is to provide a theoretical study of how the presence of far-

sighted students affects the stability of different mechanisms used for priority-based

matching problems.

Up to now, it has been assumed that all students are myopic when they decide

to join or leave some school. Myopic students do not anticipate that other students

may react to their decisions. Coalitions of farsighted students can anticipate the

actions of other students and consider the end matching that their deviations may

lead to. For instance, looking forward joining her favourite school s′ whose capacity

is full, a farsighted student i may join first the school s where she has priority and

thereby pushes student j out of school s. Later on, she can exchange her priority at

school s with another student k who has priority at school s′, prefers s to s′ and is

worse ranked than j at s. In the end matching both students i and k end up with

their favourite school. In the context of school choice, our paper is the first to study

the stable matchings when students are farsighted.

Farsighted behavior on one side of the market could be observed in several

priority-based matching problems. Public school teachers in France can apply every

year to be transferred to another school. The transfer is done through a centralized

mechanism where teachers report a list of preferences over schools and priority rules

determine who gets what. Priorities are based on a score with criteria set by law

that vary over time depending on seniority but also, for instance, if a teacher has

taught 5 years in a disadvantaged school (Combe, Tercieux and Terrier, 2022). In

this case, when a teacher must decide to apply to transfer from one school to an-

other during her career, she takes into account how such decision and her former
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experience will impact her future score, and thus her chances for later transfers.

A patient in need of a kidney faces several options for treatment. One can wait

to receive an offer of a deceased donor transplant, or one can rely on a compati-

ble or incompatible living donor and join a Kidney Exchange Program to exchange

her donor for a more compatible donor from another incompatible pair (Ashlagi

and Roth, 2021). The procedure for allocating deceased donor kidneys prioritizes

certain types of patients, such as young or hypersensitized ones. The availability

of a compatible or incompatible living donor impacts the decision of a patient on

whether to accept a deceased donor kidney offer and her score in the priority list.

In student placement to high schools in New York City, many students participate

in an appeals process to be assigned to a school they like more than the prescribed

assignment (Abdulkadiroğlu, Pathak and Roth, 2005, 2009). For the academic year

2003-2004, half of the appeals were granted by the Department of Education and

about 300 appeals out of about 5,000 were from students who received their stated

first choices (Kojima, 2011). This suggests that the possibility of rematching due to

this appeals process affects the strategic behavior of some students.

Does the TTC mechanism lead to a stable matching when students become far-

sighted? To address this question, we adopt the notion of farsighted stable set for

school choice problems to study the matchings that are stable when students farsight-

edly apply to schools while schools myopically and mechanically enroll students.5

A farsighted improving path for school choice problems consists of a sequence of

matchings that can emerge when farsighted students form or destroy matches based

on the improvement the end matching offers them relative to the current one while

myopic schools always accept any student on their priority lists unless they have full

capacity. In the case of full capacity, a school accepts to replace the current match

by another match if each student who leaves the school is replaced by a newly en-

rolled student who has a higher priority. A set of matchings is a farsighted stable

set if it satisfies (Internal Stability) for any two matchings belonging to the set,

there is no farsighted improving path connecting from one matching to the other

one, and (External Stability) there always exists a farsighted improving path from

every matching outside the set to some matching within the set.

5See Chwe (1994), Mauleon, Vannetelbosch and Vergote (2011), Ray and Vohra (2015, 2019),

Herings, Mauleon and Vannetelbosch (2019, 2020), Luo, Mauleon and Vannetelbosch (2021) for

definitions of the farsighted stable set.
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We show that, once students are farsighted, the matching obtained from the

TTC algorithm becomes stable, and moreover, a singleton set consisting of the TTC

matching is a farsighted stable set. In fact, we construct a farsighted improving path

from any matching leading to the TTC matching. Along the farsighted improving

path, students belonging to cycles sequentially act in the order of the formation of

cycles in the TTC algorithm. Looking forward towards the end matching (i.e. the

TTC matching), students belonging to a cycle first get a seat at the school they

have priority. Second, they leave that school and thereby guarantee a free seat at

that school. Third, they join the school they are matched to in the TTC matching.

Thus, the matching obtained from the TTC algorithm is not only Pareto efficient

and strategy-proof, it is also farsightedly stable. On the contrary, the matching

obtained from the DA algorithm may not belong to any farsightedly stable set. In

addition, starting from any matching, students only need to look forward (at least)

three steps ahead to have incentives for engaging a move towards the matches they

have in the matching obtained from the TTC algorithm. Hence, little farsightedness

is already sufficient for stabilizing the matching obtained from the TTC algorithm.

Hakimov and Kesten (2018) introduce the the Equitable Top Trading Cycles

(ETTC) mechanism, a variation of the TTC mechanism for selecting a matching

that intends to be more equitable or fair by eliminating avoidable justified envy

situations. We show that a singleton set consisting of the ETTC is a farsighted

stable set. However, compared to the TTC, the ETTC requires more farsightedness

on behalf of students; i.e., students need to look forward more than three steps ahead

to have incentives to move towards their ETTC partners. Morrill (2015) proposes

both the First Clinch and Trade (FCT) mechanism and the Clinch and Trade (CT)

mechanism in order to reduce the distortions the TTC may cause regarding the

elimination of justified envy. We show that the matchings obtained from those two

variations are farsightedly stable too whenever students belonging to a cycle look

forward at least three steps ahead. The TTC algorithm as well as its three variations

lead to Pareto efficient matchings. One may be tempted to infer that any Pareto

efficient matching can be stabilized once students are farsighted. However, we show

that Pareto efficiency is not a sufficient condition for a matching to be farsightedly

stable.6 Notice that the TTC algorithm and these three variations lead also to

6The matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the Boston mech-

anism) may not belong to any farsighted stable set. The IA mechanism satisfies Pareto efficiency
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strategy-proof matchings. Unfortunately, Pareto efficiency and strategy-proofness

do not guarantee that the outcome of a mechanism belong to a farsighted stable set.

To sum up, farsightedness stabilizes the matching obtained from the TTC algo-

rithm while destabilizes the matching obtained from the DA algorithm, and so may

tip the balance in favor of TTC or one of its variations.

In addition, Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux (2020) provide

both theoretical and empirical results supporting the TTC mechanism over alter-

native mechanisms. The TTC mechanism is justified envy minimal in the class of

Pareto efficient and strategy-proof mechanisms in priority-based one-to-one match-

ing problems. Justified envy minimal means that the mechanism satisfies Pareto

efficiency with the minimal amount of (myopic) instability. In priority-based many-

to-one matching problems, the TTC mechanism admits less justified envy than the

Serial Dictatorship mechanism in an average sense. Recently, Doğan and Ehlers

(2022) show that, for any stability comparison satisfying three basic properties, the

TTC mechanism is minimally unstable among Pareto efficient and strategy-proof

mechanisms when schools have unit capacities.

The paper is organized as follows. In Section 2, we introduce priority-based

school choice problems. In Section 3, we provide a formal description of the TTC

mechanism and its algorithm. In Section 4, we introduce the notions of farsighted

improving path and farsighted stable set for school choice problems, and we provide

our main result. In Section 5, we look at how much farsightedness is needed for

getting our main result. In Section 6, we consider variations of the TTC mechanism.

In Section 7, we conclude.

2 School choice problems

A school choice problem is a list 〈I, S, q, P, F 〉 where

(i) I = {i1, ..., in} is the set of students,

(ii) S = {s1, ..., sm} is the set of schools,

(iii) q = (qs1 , ..., qsm) is the quota vector where qs is the number of available seats

at school s,

but is not strategy-proof.
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(iv) P = (Pi1 , ..., Pin) is the preference profile where Pi is the strict preference of

student i over the schools and her outside option,

(v) F = (Fs1 , ..., Fsm) is the strict priority structure of the schools over the stu-

dents.

Let i be a generic student and s be a generic school. We write i for singletons

{i} ⊆ I and s for singletons {s} ⊆ S. The preference Pi of student i is a linear order

over S ∪ i. Student i prefers school s to school s′ if sPis
′. School s is acceptable

to student i if sPii. We often write Pi = s, s′, s′′ meaning that student i’s most

preferred school is s, her second best is s′, her third best is s′′ and any other school

is unacceptable for her. Let Ri be the weak preference relation associated with the

strict preference relation Pi.
7

The priority Fs of school s is a linear order over I. That is, Fs assigns ranks to

students according to their priority for school s. The rank of student i for school

s is denoted Fs(i) and Fs(i) < Fs(j) means that student i has higher priority for

school s than student j. For s ∈ S, i ∈ I, let F+(s, i) = {j ∈ I | Fs(j) < Fs(i)} be

the set of students who have higher priority than student i for school s.

A matching µ for a school choice problem is a collection of pairs {(i, j)}i∈I,j∈S∪{i}
such that for any i ∈ I and any s ∈ S, (i) µ(i) = j ⇔ (i, j) ∈ µ where either

j = s ∈ S or j = i, (ii) µ(s) = {j ∈ I | (j, s) ∈ µ} ∈ 2I , (iii) µ(i) = s ⇔ i ∈ µ(s),

(iv) #µ(s) ≤ qs. Condition (i) means that student i is assigned a seat at school s

under µ if µ(i) = s and is unassigned under µ if µ(i) = i. Condition (iv) requires

that no school exceeds its quota under µ. That is, for any s ∈ S, we have #µ(s) =

#{i ∈ I | µ(i) = s} ≤ qs. The set of all matchings is denoted M.8 For instance,

µ = {(i1, s2), (i2, s1), (i3, s1), (i4, i4)} is the matching where student i1 is assigned to

school s2, students i2 and i3 are assigned to school s1 and student i4 is unassigned.

Given a school choice problem 〈I, S, q, P, F 〉, a matching µ is stable if

(i) for all i ∈ I we have µ(i)Rii (individual rationality),

(ii) for all i ∈ I and all s ∈ S, if sPiµ(i) then #{j ∈ I | µ(j) = s} = qs (non-

wastefulness),

7Haeringer and Klijn (2009) investigate constrained school choice problems where students can

only rank a fixed number of schools.
8Throughout the paper we use the notation ⊆ for weak inclusion and ⊂ for strict inclusion.

Finally, # will refer to the notion of cardinality.
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(iii) for all i, j ∈ I with µ(j) = s, if µ(j)Piµ(i) then j ∈ F+(s, i) (no justified

envy).

Let S(I, S, q, P, F ) be the set of stable matchings. A matching µ′ Pareto dom-

inates a matching µ if µ′(i)Riµ(i) for all i ∈ I and µ′(j)Pjµ(j) for some j ∈ I. A

matching is Pareto efficient if it is not Pareto dominated by another matching. Let

E(I, S, q, P, F ) be the set of Pareto efficient matchings.

A mechanism systematically selects a matching for any given school choice prob-

lem (I, S, q, P, F ). A mechanism is individually rational (non-wasteful / stable /

Pareto efficient) if it always selects an individually rational (non-wasteful / stable

/ Pareto efficient) matching. A mechanism is strategy-proof if no student can ever

benefit by unilaterally misrepresenting her preferences.

3 The Top Trading Cycles algorithm

Abdulkadirog̃lu and Sönmez (2003) introduce the Top Trading Cycles (TTC) mech-

anism for selecting a matching for each school problem. The TTC mechanism finds

a matching by means of the following TTC algorithm.

Step 1. Set q1
s = qs for all s ∈ S where q1

s is equal to the initial capacity of school

s at Step 1. Each student i ∈ I points to the school that is ranked first in

Pi. If there is no such school, then student i points to herself and she forms

a self-cycle. Each school s ∈ S points to the student that has the highest

priority in Fs. Since the number of students and schools are finite, there is

at least one cycle. A cycle is an ordered list of distinct schools and distinct

students (s1, i1, s2, ..., sl, il) where s1 points to i1 (denoted s1 7→ i1), i1 points

to s2 (i1 7→ s2), . . . , sl points to il (sl 7→ il) and il points to s1 (il 7→ s1). Each

school (student) can be part of at most one cycle. Every student in a cycle

is assigned a seat at the school she points to and she is removed. Similarly,

every student in a self-cycle is not assigned to any school and is removed. If a

school s is part of a cycle, then its remaining capacity q2
s = q1

s − 1. If a school

s is not part of any cycle, then its remaining capacity q2
s = q1

s . If q2
s = 0, then

school s is removed. Let C1 = {c1
1, c

2
1, ..., c

L1
1 } be the set of cycles in Step 1

(where L1 ≥ 1 is the number of cycles in Step 1). Let I1 be the set of students

who are assigned to some school at Step 1. Let ml
1 be all the matches from
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cycle cl1 that are formed in Step 1 of the algorithm:

ml
1 =

{
{(i, s) | i, s ∈ cl1 and i 7→ s} if cl1 6= (j)

{(j, j)} if cl1 = (j)
(1)

where (j, j) simply means that student j who is in a self-cycle ends up being

definitely unassigned to any school. Let M1 =
⋃L1

l=1m
l
1 be all the matches

between students and schools formed in Step 1 of the algorithm.

Step k ≥ 2. Notice that qks keeps track of how many seats are still available at the school at

Step k of the algorithm. Each remaining student i ∈ I \
⋃k−1
l=1 Il points to the

school s that is ranked first in Pi such that qks ≥ 1. If there is no such school,

then student i points to herself and she forms a self-cycle. Each school s ∈ S
such that qks ≥ 1 points to the student j ∈ I \

⋃k−1
l=1 Il that has the highest

priority in Fs. There is at least one cycle. Every student in a cycle is assigned

a seat at the school she points to and she is removed. Similarly, every student

in a self-cycle is not assigned to any school and is removed. If a school s is

part of a cycle, then its remaining capacity qk+1
s = qks − 1. If a school s is not

part of any cycle, then its remaining capacity qk+1
s = qks . If qk+1

s = 0, then

school s is removed. Let Ck = {c1
k, c

2
k, ..., c

Lk
k } be the set of cycles in Step k

(where Lk ≥ 1 is the number of cycles in Step k). Let Ik be the set of students

who are assigned to some school at Step k.

Let ml
k be all the matches from cycle clk that are formed in Step k of the

algorithm:

ml
k =

{
{(i, s) | i, s ∈ clk and i 7→ s} if clk 6= (j)

{(j, j)} if clk = (j)
(2)

Let Mk =
⋃Lk

l=1 m
l
k be all the matches between students and schools formed in

Step k of the algorithm.

End. The algorithm stops when all students have been removed. Let k̄ be the step

at which the algorithm stops. Let µT denote the matching obtained from the

Top Trading Cycles mechanism and it is given by µT =
⋃k̄
k=1Mk.

Notice that, for any k′ ∈ {1, . . . , k̄ − 1}, given all the matches already settled,

i.e.
⋃k′

k=1Mk, students involve in cycle clk′+1, l ∈ {1, . . . , Lk′+1}, of Step k′+ 1 of the

TTC algorithm obtains their best possible assignment in ml
k′+1.
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Abdulkadirog̃lu and Sönmez (2003) show that the TTC mechanism is Pareto

efficient and strategy-proof. TTC is also individually rational and non-wasteful, but

it is not stable.

In addition to TTC, two alternative mechanisms are also central to the theory

of school choice and commonly adopted all over the world: the Deferred Acceptance

(DA) algorithm and the Immediate Acceptance (IA) algorithm, also known as the

Boston mechanism. Let µD denote the matching obtained from the DA mechanism

and µB denote the matching obtained from the IA (or Boston) mechanism.

4 Farsighted Stable Sets for School Choice

We adopt the notion of farsighted stable set for school choice problems to study the

matchings that are stable when students farsightedly apply to schools while schools

myopically and mechanically enroll students. The notion of a farsighted stable set

for school choice problems is adapted from the notion of a myopic-farsighted stable

set that has been introduced by Herings, Mauleon and Vannetelbosch (2020) for

two-sided matching problems and by Luo, Mauleon and Vannetelbosch (2021) for

network formation games.9

A farsighted improving path for school choice problems is a sequence of matchings

that can emerge when farsighted students form or destroy matches based on the

improvement the end matching offers them relative to the current one while myopic

schools form or destroy matches based on the improvement the next matching in

the sequence offers them relative to the current one.

Let P(µ(s)) denote the power set of the set µ(s), i.e. the set of all subsets of

µ(s).

Definition 1. Given a matching µ, a coalition N ⊆ I ∪ S is said to be able to

enforce a matching µ′ over µ if the following conditions hold:

(i) µ′(s) /∈ P(µ(s)) ∪ {s} implies µ′(s) \ µ(s) ∪ {s} ⊆ N and

(ii) µ′(s) ∈ P(µ(s))∪{s}, µ′(s) 6= µ(s), implies either s or µ(s)\µ′(s) or s together

with a non-empty subset of µ(s) \ µ′(s) should be in N .
9When all agents are myopic, the myopic-farsighted stable set boils down to the pairwise CP

vNM set as defined in Herings, Mauleon and Vannetelbosch (2017) for two-sided matching prob-

lems. Ehlers (2007) introduces another set-valued concept based upon the concept of vNM stable

sets.

9



Condition (i) says that any new match in µ′ that contains different partners than

in µ should be such that s and the different partners of s belong to N . Condition (ii)

states that so as to leave some (or all) positions of one existing match in µ unfilled,

either s or the students leaving such positions or s and some non-empty subset of

such students should be in N .

Definition 2. Let 〈I, S, q, P, F 〉 be a school choice problem. A farsighted improving

path from a matching µ ∈ M to a matching µ′ ∈ M \ {µ} is a finite sequence

of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that for every

l ∈ {0, . . . , L− 1} there is a coalition Nl ⊆ I ∪ S that can enforce µl+1 from µl and

(i) µL(i)Riµl(i) for all i ∈ Nl ∩ I and µL(j)Pjµl(j) for some j ∈ Nl ∩ I,

(ii) For every s ∈ Nl ∩ S such that #µl(s) + #{i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} > qs,

there is {i1, . . . , iJ} ⊆ {i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} and {j1, . . . , jJ} = {i ∈
I | i ∈ µl(s), i /∈ µl+1(s)} such that

Fs(i1) < Fs(j1)

Fs(i2) < Fs(j2)

...

Fs(iJ) < Fs(jJ).

Notice that µl(s) are the students who are assigned to school s in µl and {i ∈ I |
i /∈ µl(s), i ∈ µl+1(s)} are the students who join school s in µl+1. Thus, a farsighted

improving path for school choice problems consists of a sequence of matchings where

along the sequence (i) students form or destroy matches based on the improvement

the end matching offers them relative to the current one while (ii) schools always

accept any student on their priority lists unless they have full capacity. In the case

of full capacity, a school s ∈ Nl ∩ S accepts to replace the match µl by µl+1 if each

student i ∈ {j ∈ I | j ∈ µl(s), j /∈ µl+1(s)} who leaves or is evicted from school s

from µl to µl+1 is replaced by a newly enrolled student who has a higher priority.

Let some µ ∈ M be given. If there exists a farsighted improving path from a

matching µ to a matching µ′, then we write µ→ µ′. The set of matchings µ′ ∈ M
such that there is a farsighted improving path from µ to µ′ is denoted by φ(µ), so

φ(µ) = {µ′ ∈M | µ→ µ′}.

Definition 3. Let 〈I, S, q, P, F 〉 be a school choice problem. A set of matchings

V ⊆M is a farsighted stable set if it satisfies:
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(i) For every µ, µ′ ∈ V , it holds that µ′ /∈ φ(µ).

(ii) For every µ ∈M \ V , it holds that φ(µ) ∩ V 6= ∅.

Condition (i) of Definition 3 corresponds to internal stability (IS). For any two

matchings µ and µ′ in the farsighted stable set V there is no farsighted improving

path connecting µ to µ′. Condition (ii) of Definition 3 expresses external stability

(ES). There always exists a farsighted improving path from every matching µ outside

the farsighted stable set V to some matching in V .10

Theorem 1. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism. The singleton set {µT} is a

farsighted stable set.

Proof. Since {µT} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µT , we need to show that φ(µ) 3 µT . We build in steps a farsighted

improving path from µ to µT . Remember that µT =
⋃k̄
k=1 Mk where Mk =

⋃Lk

l=1m
l
k

are all the matches between students and schools formed in Step k of the TTC

algorithm, and ml
k is given by Expressions (1) and (2).

Step 1.1. If m1
1 ⊆ µ and 1 6= L1 then go to Step 1.2 with µ′′′1,1 = µ. If m1

1 ⊆ µ and 1 = L1

then go to Step 1.End with µ′′′1,L1
= µ. If m1

1 * µ then µ′1,1 = µ − {(i, µ(i)) |
(i, µT (i)) ∈ m1

1 and µ(i) 6= i}+ {(i, s) | i, s ∈ c1
1 and s 7→ i} − {(j, s) ∈ µ | s ∈

c1
1, µ(s) ∩ c1

1 = ∅, #µ(s) = qs and Fs(j) > Fs(j
′) for all j′ ∈ µ(s), j′ 6= j}.11

That is, starting from µ, looking forward towards µT , the coalition of students

belonging to c1
1 has incentives to deviate to µ′1,1 where each student in c1

1 is

assigned to the school where she has the highest priority. Students belonging

to c1
1 obtain in µT their best possible match. Schools have incentives to accept

those students because either they do not have full capacity or the new student

replaces the student who had the lowest priority among the students enrolled

at the school. Next, students belonging to c1
1 leave their school to reach µ′′1,1 =

10When all agents (schools and students) are farsighted, the notion of the farsighted stable

set in Definition 3 coincides with the definition of the vNM farsighted stable set of Mauleon,

Vannetelbosch and Vergote (2011) who define and characterize the vNM farsighted stable set for

two-sided matching problems. Doğan and Ehlers (2023) show the existence of myopic-farsighted

stable sets for matching problems where there are farsighted agents only on one side of the market,

while there may be myopic agents on both sides.
11We use the notation + for adding pairs and − for deleting pairs.
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µ′1,1 − {(i, s) | i, s ∈ c1
1 and s 7→ i}. Next, each student belonging to c1

1 joins

her most preferred school to reach µ′′′1,1 = µ′′1,1 + {(i, s) | i, s ∈ c1
1 and i 7→ s}.

Schools accept those students since they have (at least) one vacant position.

We reach µ′′′1,1 with m1
1 ⊆ µ′′′1,1 and so students belonging to c1

1 are assigned to

the same school as in µT . If 1 6= L1, then go to Step 1.2. Otherwise, go to

Step 1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.l. (l > 1) If ml
1 ⊆ µ′′′1,l−1 and l 6= L1 then go to Step 1.l+1 with µ′′′1,l = µ′′′1,l−1.

If ml
1 ⊆ µ′′′1,l−1 and l = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,l−1. If

ml
1 * µ′′′1,l−1 then µ′1,l = µ′′′1,l−1 − {(i, µ′′′1,l−1(i)) | (i, µT (i)) ∈ ml

1 and µ′′′1,l−1(i) 6=
i} + {(i, s) | i, s ∈ cl1 and s 7→ i} − {(j, s) ∈ µ′′′1,l−1 | s ∈ cl1, µ′′′1,l−1(s) ∩ cl1 =

∅, #µ′′′1,l−1(s) = qs and Fs(j) > Fs(j
′) for all j′ ∈ µ′′′1,l−1(s), j′ 6= j}. From

µ′′′1,l−1, looking forward towards µT , the coalition of students belonging to cl1

has incentives to deviate to µ′1,l where each student in cl1 is assigned to the

school where she has the highest priority. Indeed, students belonging to cl1

obtain in µT their best possible match. Schools have incentives to accept

those students because either they do not have full capacity or the new student

replaces the student who had the lowest priority among the students enrolled

at the school. Next, students belonging to cl1 leave their school to reach µ′′1,l =

µ′1,l − {(i, s) | i, s ∈ cl1 and s 7→ i}. Next, each student belonging to cl1 joins

her most preferred school to reach µ′′′1,l = µ′′1,l + {(i, s) | i, s ∈ cl1 and i 7→ s}.
Schools accept those students since they have (at least) one vacant position.

We reach µ′′′1,l with ml
1 ⊆ µ′′′1,l and so students belonging to cl1 are assigned to

the same school as in µT . If l 6= L1, then go to Step 1.l+1. Otherwise, go to

Step 1.End with µ′′′1,L1
= µ′′′1,l.

Step 1.End. We have reached µ′′′1,L1
with

⋃L1

l=1m
l
1 = M1 ⊆ µ′′′1,L1

. If µ′′′1,L1
= µT then the

process ends. Otherwise, go to Step 2.1.

Step k.1. (k ≥ 2) If m1
k ⊆ µ′′′k−1,Lk−1

and 1 6= Lk then go to Step k.2 with µ′′′k,1 = µ′′′k−1,Lk−1
.

If m1
k ⊆ µ′′′k−1,Lk−1

and 1 = Lk then go to Step k.End with µ′′′k,Lk
= µ′′′k−1,Lk−1

.

If m1
k * µ′′′k−1,Lk−1

then µ′k,1 = µ′′′k−1,Lk−1
− {(i, µ′′′k−1,Lk−1

(i)) | (i, µT (i)) ∈
m1
k and µ′′′k−1,Lk−1

(i) 6= i} + {(i, s) | i, s ∈ c1
k and s 7→ i} − {(j, s) ∈ µ′′′k−1,Lk−1

|
s ∈ c1

k, µ
′′′
k−1,Lk−1

(s)∩c1
k = ∅, #µ′′′k−1,Lk−1

(s) = qs and Fs(j) > Fs(j
′) for all j′ ∈

µ′′′k−1,Lk−1
(s), j′ 6= j}. Starting from µ′′′k−1,Lk−1

, looking forward towards µT , the

coalition of students belonging to c1
k has now incentives to deviate to µ′k,1
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where each student in c1
k is assigned to the school where she has the highest

priority among students belonging to I \ (
⋃k−1
k′=1 Ik′). Remember that

⋃k−1
k′=1 Ik′

is the set of students who are involved in
⋃k−1
k′=1 Mk′ . Given that the matches⋃k−1

k′=1Mk′ ⊆ µ′′′k−1,Lk−1
are already settled and remain fixed, students belong-

ing to c1
k obtain in µT their best possible match. Schools have incentives to

accept those students because either they do not have full capacity or the new

student replaces the student who had the lowest priority among the students

enrolled at the school. Next, students belonging to c1
k leave their school to

reach µ′′k,1 = µ′k,1 − {(i, s) | i, s ∈ c1
k and s 7→ i}. Next, each student belonging

to c1
k joins her most preferred school (constrained to

⋃k−1
k′=1Mk′ being fixed) to

reach µ′′′k,1 = µ′′k,1 + {(i, s) | i, s ∈ c1
k and i 7→ s}. Schools accept those students

since they have (at least) one vacant position. We reach µ′′′k,1 with m1
k ⊆ µ′′′k,1

and so students belonging to c1
k are assigned to the same school as in µT . If

1 6= Lk, then go to Step k.2. Otherwise, go to Step k.End with µ′′′k,Lk
= µ′′′k,1.

Step k.l. (l ≥ 2) If ml
k ⊆ µ′′′k,l−1 and l 6= Lk then go to Step k.l+1 with µ′′′k,l = µ′′′k,l−1.

If ml
k ⊆ µ′′′k,l−1 and l = Lk then go to Step k.End with µ′′′k,Lk

= µ′′′k,l−1. If

ml
k * µ′′′k,l−1 then µ′k,l = µ′′′k,l−1 − {(i, µ′′′k,l−1(i)) | (i, µT (i)) ∈ ml

k and µ′′′k,l−1(i) 6=
i} + {(i, s) | i, s ∈ clk and s 7→ i} − {(j, s) ∈ µ′′′k,l−1 | s ∈ clk, µ′′′k,l−1(s) ∩ clk =

∅, #µ′′′k,l−1(s) = qs and Fs(j) > Fs(j
′) for all j′ ∈ µ′′′k,l−1(s), j′ 6= j}. Starting

from µ′′′k,l−1, looking forward towards µT , the coalition of students belonging

to clk has now incentives to deviate to µ′k,l where each student in clk is assigned

to the school where she has the highest priority among students belonging

to I \ (
⋃k−1
k′=1 Ik′). Given that the matches

⋃k−1
k′=1Mk′ ⊆ µ′′′k−1,Lk−1

are already

settled and remain fixed, students belonging to clk obtain in µT their best

possible match. Schools have incentives to accept those students because either

they do not have full capacity or the new student replaces the student who

had the lowest priority among the students enrolled at the school. Next,

students belonging to clk leave their school to reach µ′′k,l = µ′k,l − {(i, s) | i, s ∈
clk and s 7→ i}. Next, each student belonging to clk joins her most preferred

school (constrained to
⋃k−1
k′=1Mk′ being fixed) to reach µ′′′k,l = µ′′k,l + {(i, s) |

i, s ∈ clk and i 7→ s}. Schools accept those students since they have (at least)

one vacant position. We reach µ′′′k,l with ml
k ⊆ µ′′′k,l and so students belonging

to clk are assigned to the same school as in µT . If l 6= Lk, then go to Step

k.l+1. Otherwise, go to Step k.End with µ′′′k,Lk
= µ′′′k,l.
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Step k.End. We have reached µ′′′k,Lk
with

⋃k
k′=1Mk′ ⊆ µ′′′k,Lk

. If µ′′′k,Lk
= µT then the process

ends. Otherwise, go to Step k+1.

End. The process goes on until Step k̄ where we reach µ′′′
k̄,Lk̄

=
⋃k̄
k=1 Mk = µT .

The matching obtained from the TTC algorithm is always Pareto efficient but

may not be stable when students are myopic. Theorem 1 shows that, once students

are farsighted, the matching obtained from the TTC algorithm becomes stable.12

By means of Example 1 we provide the basic intuition behind Theorem 1 and its

proof.

Example 1 (Haeringer, 2017). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3, i4} and S = {s1, s2, s3}. Students’ preferences and schools’ priorities

and capacities are as follows.

Students

Pi1 Pi2 Pi3 Pi4

s1 s1 s2 s1

s2 s2 s1 s3

s3 s3 s3 s2

Schools

Fs1 Fs2 Fs3

qs 2 1 1

i1 i1 i2

i3 i2 i3

i4 i4 i4

i2 i3 i1

In Example 1, µT = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} is the matching obtained

from the TTC algorithm. In the first round of the TTC algorithm, there is one

cycle where student i1 points to school s1 and school s1 points to student i1. That

is, C1 = {c1
1} with c1

1 = {s1, i1}. Student i1 is matched to school s1: m1
1 = {(i1, s1)}

and school s1 has only one leftover seat. In the second round of the TTC algorithm,

there is one cycle where student i2 points to school s1, school s1 points to student i3,

student i3 points to school s2 and school s2 points to student i2. That is, C2 = {c1
2}

with c1
2 = {s1, i3, s2, i2}. Student i2 is matched to school s1 and student i3 is matched

to school s2: m1
2 = {(i2, s1), (i3, s2)}, and so i2 and i3 exchange their priority. In the

12This result is robust to the incorporation of various forms of maximality in the definition of

farsighted improving path, like the strong rational expectations farsighted stable set in Dutta and

Vohra (2017) and absolute maximality as in Ray and Vohra (2019). See also Herings, Mauleon

and Vannetelbosch (2020).

14



third round of the TTC algorithm, there is only one leftover student, i4, who points

to school s3 and school s3 points to student i4. That is, C3 = {c1
3} with c1

3 = {s3, i4}.
Student i4 is matched to school s3: m1

3 = {(i4, s3)}, and so µT = m1
1 ∪m1

2 ∪m1
3.

From Theorem 1 we know that {µT} is a farsighted stable set. Indeed, from any

µ 6= µT there exists a farsighted improving path leading to µT . We now provide the

basic mechanism behind the construction of a farsighted improving path leading to

µT . Take for instance the matching µ0 = {(i1, s1), (i2, s2), (i3, s3), (i4, s1)}. We now

construct a farsighted improving from µ0 to µT = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} =

µ4 following the steps as in the proof of Theorem 1. First, we consider students and

schools belonging to the cycles in C1. Since m1
1 = {(i1, s1)} ⊆ µ0, student i1 stays

matched to school s1 along the farsighted improving path, i.e. m1
1 = {(i1, s1)} ⊆ µl,

0 ≤ l ≤ 4. Next, we consider students and schools belonging to the cycles in C2.

Notice that m1
2 = {(i2, s1), (i3, s2)} ∩ µ0 = ∅. Looking forward towards µT , the

coalition N0 = {i2, i3, s1, s2} deviates so that student i3 joins school s1 and student

i2 joins schools s2 to reach the matching µ1 = {(i1, s1), (i2, s2), (i3, s1), (i4, i4)} where

students i2 and i3 are matched to the schools where they have priority. By doing so,

they push student i4 out of school s1. Next, the coalition N1 = {i2, i3} deviates so

that students i2 and i3 leave, respectively, schools s2 and s1 to reach the matching

µ2 = {(i1, s1), (i2, i2), (i3, i3), (i4, i4)} where both students are not assigned to any

school. They are temporarily worse off, but they anticipate to end up in µT . Next,

the coalition N2 = {i2, i3, s1, s2} deviates so that student i2 joins school s1 and stu-

dent i3 joins schools s2 to reach the matching µ3 = {(i1, s1), (i2, s1), (i3, s2), (i4, i4)}
with m1

2 = {(i2, s1), (i3, s2)} ⊆ µ3. Both schools accept to enroll those students

because they are not at full capacity. Finally, we consider students and schools be-

longing to the cycles in C3. Since m1
3 = {(i4, s3)}∩µ3 = ∅, the coalition N3 = {i4, s3}

deviates so that student i4 joins school s3 to form the match (i4, s3) and to reach

the matching µ4 = µT . Thus, µT ∈ φ(µ0).

In Example 1, µD = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)} is the matching obtained

from the Deferred Acceptance (DA) algorithm, µB = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)}
is the matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the

Boston mechanism). Thus, µT 6= µD 6= µB. We next show that in Example 1,

once students are farsighted, the matching obtained from the DA algorithm and the

matching obtained from the IA algorithm are unstable.

Since students are at least as well off and some of them (i2 and i3) are strictly
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better off in µT than in µD, we have that there is no farsighted improving path from

µT to µD. That is, µD /∈ φ(µT ). Hence, {µD} is not a farsighted stable set since

(ES) is violated. Let

µ1 = {(i1, s1), (i2, i2), (i3, s2), (i4, s1)},

µ2 = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)} = µB,

µ3 = {(i1, s1), (i2, s2), (i3, i3), (i4, s1)},

µ4 = {(i1, s1), (i2, s2), (i3, s3), (i4, s1)},

µ5 = {(i1, s1), (i2, s2), (i3, s1), (i4, i4)}.

Computing the farsighted improving paths emanating from µT , we get φ(µT ) =

{µ1, µ2, µ3, µ4}. Notice that µ5 /∈ φ(µT ) since student i4 is worse off in µ5 than in

µT . From µ1, µ2, µ3, µ4 and µ5, there is a farsighted improving to µD. That is,

µD ∈ φ(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}. From µD there is only a farsighted improving

path to µT ; i.e. φ(µD) = {µT}. For a set V ⊇ {µD} to be a farsighted stable set,

we need that (i) µT /∈ V (otherwise (IS) is violated), (ii) a single µ ∈ {µ1, µ2, µ3, µ4}
should belong to V to satisfy (ES) since µD /∈ φ(µT ). But, V would then violate (IS)

since µD ∈ φ(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}. Thus, there is no V such that µD ∈ V
that is a farsighted stable set in Example 1.

Since φ(µD) = {µT}, there is no farsighted improving path from µD to µB. Thus,

V = {µB} does not satisfy (ES), and hence V = {µB} is not a farsighted stable

set. Moreover, a set V ⊇ {µB, µD} cannot be a farsighted stable since µD ∈ φ(µB).

Otherwise, V would violate (IS) since there is a farsighted stable improving path

from µB to µD.

Is V = {µT} the unique farsighted stable set in Example 1? Any other set V ′

such that µT ∈ V ′ violates (IS), and hence µT /∈ V ′. Then, µD ∈ V ′ because,

otherwise, V ′ violates (ES) since φ(µD) = {µT}. However, as shown before, there

is no V ′ such that µD ∈ V ′ that is a farsighted stable set. Thus, we have that

V = {µT} is the unique farsighted stable set.

Remark 1. There are school choice problems such that the matching obtained from

the Deferred Acceptance (DA) algorithm does not belong to any farsightedly stable

set.

Since the matching obtained from the IA algorithm is Pareto efficient, Example

1 also shows that there are school choice problems where some Pareto efficient
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matching does not belong to any farsighted stable set. Thus, Pareto efficiency is not

a sufficient condition for guaranteeing the stability of a matching when students are

farsighted.

Remark 2. There are school choice problems such that some Pareto efficient match-

ing does not belong to any farsighted stable set.

Corollary 1. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism after k̄ steps. From any µ 6= µT

there is a farsighted improving path to µT with µ0 = µ and µL = µT such that for

every l ∈ {0, . . . , L − 1} there is a coalition Nl ⊆
⋃k̄
k=1 Ck that enforces µl+1 from

µl.

Corollary 1 follows from the proof of Theorem 1. Notice that
⋃k̄
k=1 Ck is simply

the collection of sets where each element is a set consisting of students and schools

belonging to a cycle obtained from the TTC algorithm. Definition 2 of a farsighted

improving path is quite permissive in terms of the size of the coalition Nl that

enforces µl+1 from µl. However, Corollary 1 tells us that there exists a farsighted

improving path from µ 6= µT to µT with µ0 = µ and µL = µT such that for every

l ∈ {0, . . . , L − 1} the coalition Nl that enforces µl+1 from µl consists of students

(and possibly schools) who are part of the same cycle in the TTC algorithm. Thus,

for getting Theorem 1, it is sufficient to allow a deviating coalition (involving more

than one student) to be composed exclusively of students (and possibly their schools)

who are exchanging their priorities among themselves in the TTC algorithm. Such

restriction seems not too demanding since students who coordinate their moves are

the ones who exchange their priorities.

5 Limited Farsightedness

How much farsightedness from the students do we need to stabilize the matching

obtained from the TTC algorithm? To answer this question we propose the notion

of horizon-k farsighted stable set for school choice problems to study the matchings

that are stable when students are limited in their degree of farsightedness. A horizon-

k farsighted improving path for school choice problems is a sequence of matchings

that can emerge when limited farsighted students form or destroy matches based on

the improvement the k-steps ahead matching offers them relative to the current one
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while myopic schools form or destroy matches based on the improvement the next

matching in the sequence offers them relative to the current one. A set of matchings

is a horizon-k farsighted stable set if (IS) for any two matchings belonging to the

set, there is no horizon-k farsighted improving path connecting from one matching

to the other one, and (ES) there always exists a horizon-k farsighted improving path

from every matching outside the set to some matching within the set.

Definition 4. Let 〈I, S, q, P, F 〉 be a school choice problem. A horizon-k farsighted

improving path from a matching µ ∈ M to a matching µ′ ∈ M \ {µ} is a finite

sequence of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that for

every l ∈ {0, . . . , L − 1} there is a coalition Nl ⊆ I ∪ S that can enforce µl+1 from

µl and

(i) µmin{l+k,L}(i)Riµl(i) for all i ∈ Nl ∩ I and µmin{l+k,L}(j)Pjµl(j) for some j ∈
Nl ∩ I,

(ii) For every s ∈ Nl ∩ S such that #µl(s) + #{i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} > qs,

there is {i1, . . . , iJ} ⊆ {i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} and {j1, . . . , jJ} = {i ∈
I | i ∈ µl(s), i /∈ µl+1(s)} such that

Fs(i1) < Fs(j1)

Fs(i2) < Fs(j2)

...

Fs(iJ) < Fs(jJ).

Definition 4 tells us that a horizon-k farsighted improving path for school choice

problems consists of a sequence of matchings where along the sequence students form

or destroy matches based on the improvement the k-steps ahead matching offers

them relative to the current one. Precisely, along a horizon-k farsighted improving

path, each time some student i is on the move she is comparing her current match

(i.e. µl(i)) with the match she will get k-steps ahead on the sequence (i.e. µl+k(i))

except if the end matching of the sequence lies within her horizon (i.e. L < l+k). In

such a case, she simply compares her current match (i.e. µl(i)) with the end match

(i.e. µL). Schools continue to accept any student on their priority lists unless they

have full capacity. In the case of full capacity, a school s ∈ Nl∩S accepts to replace

the match µl by µl+1 if each student i ∈ {j ∈ I | j ∈ µl(s), j /∈ µl+1(s)} who leaves
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or is evicted from school s from µl to µl+1 is replaced by a newly enrolled student

who has a higher priority.

Let some µ ∈M be given. If there exists a horizon-k farsighted improving path

from a matching µ to a matching µ′, then we write µ →k µ
′. The set of matchings

µ′ ∈ M such that there is a horizon-k farsighted improving path from µ to µ′ is

denoted by φk(µ), so φk(µ) = {µ′ ∈M | µ→k µ
′}.

Definition 5. Let 〈I, S, q, P, F 〉 be a school choice problem. A set of matchings

V ⊆M is a horizon-k farsighted stable set if it satisfies:

(i) For every µ, µ′ ∈ V , it holds that µ′ /∈ φk(µ).

(ii) For every µ ∈M \ V , it holds that φk(µ) ∩ V 6= ∅.

From the construction of a farsighted improving path in the proof of Theorem

1 we have that students belonging to a cycle only need to look forward three steps

ahead to have incentives for engaging a move towards the matches they have in the

matching obtained from the TTC algorithm, µT . Once they reach those matches

they do not move afterwards. The three steps consist of (i) getting first a seat at

the school they have priority, (ii) leaving that school and by doing so, guaranteeing

a free seat at that school, (iii) joining the school they match to in µT . Hence, for

k ≥ 3, there exists a horizon-k farsighted improving from any µ 6= µT to µT , and so

{µT} is a horizon-k farsighted stable set.13

Corollary 2. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism. The singleton set {µT} is a

horizon-k farsighted stable set for k ≥ 3.

6 Variations of The TTC Algorithm

6.1 Equitable Top Trading Cycles Algorithm

Hakimov and Kesten (2018) introduce the Equitable Top Trading Cycles mecha-

nism for selecting a matching for each school problem by means of the Equitable

13In Example 1, it is sufficient for the students who belong to c12 to look forward towards µ3

when they participate to the moves from µ0 to µ4. Indeed, they are not affected by the move from

µ3 to µ4 since they remain with the same matches.
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Top Trading Cycles algorithm (ETTC). They show that the ETTC mechanism is

Pareto-efficient and group strategy-proof and eliminates more avoidable justified

envy situations than the TTC. Instead of allowing only the current highest priority

students to participate in the trading process, the ETTC assigns all slots of each

school s to all the qs students with the highest priorities in each school, giving

one slot to each student and endowing them with equal trading power. The terms

of trade are next determined by a pointing rule specifying for each student-school

pair which student-school pair should be pointed to among those who contain the

remaining favourite school.

In the ETTC, each student-school pair (i, s) points to the student-school pair

(i′, s′) containing the highest priority student for s, the school contained in the

former pair. By doing so, the ETTC mechanism ensures that the students involved

in a cycle of student-school pairs have the highest priority for their favourite schools

among their competitors at that step of the trading market.

Example 2. Consider a school choice problem 〈I, S, q, P, F 〉 with eight students,

I = {i1, i2, i3, i4, i5, i6, i7, i8} and four schools, S = {s1, s2, s3, s4}. Students’ prefer-

ences and schools’ priorities and capacities are as follows.

Students

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8

s2 s3 s1 s1 s4 s2 s4 s1

s1 s1 s3 s3 s2 s4 s2 s3

s3 s2 s4 s2 s3 s3 s1 s2

s4 s4 s2 s4 s1 s1 s3 s4

Schools

Fs1 Fs2 Fs3 Fs4

qs 1 3 3 1

i1 i4 i1 i2

i2 i2 i5 i6

i5 i3 i3 i5

i7 i8 i7 i3

i6 i7 i4 i7

i3 i1 i2 i8

i8 i5 i6 i4

i4 i6 i8 i1

Let µE be the matching obtained from the ETTC mechanism. We illustrate the

mechanism behind the ETTC algorithm by means of Example 2 which is adapted

from Hakimov and Kesten (2018). A formal description of the ETTC algorithm can

be found in Appendix A.1.

In the inheritance round of the first step of the ETTC algorithm, all seats are

available to inherit and so, students are assigned to seats according to the priority
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orders F to form the following student-school pairs: (i1, s1), (i4, s2), (i2, s2), (i3, s2),

(i1, s3), (i5, s3), (i3, s3) and (i2, s4). Next, each student-school pair (i, s) points to

the student-pair (i′, s′) such that s′ is the top choice of student i and i′ has the

highest priority for school s among the students who are assigned a seat at school

s′ in the inheritance round. That is, (i1, s1) points to (i2, s2), (i2, s2) points to

(i3, s3), (i3, s3) points to (i1, s1). In addition, (i5, s3) points to (i2, s4) and (i2, s4)

points to (i5, s3). Finally, (i4, s2) points to (i1, s1). Hence, there are two cycles:

(i1, s1) 7→ (i2, s2) 7→ (i3, s3) 7→ (i1, s1) and (i5, s3) 7→ (i2, s4) 7→ (i5, s3) with student

i2 participating to both cycles.14 It leads to the following matches: (i1, s2), (i2, s3),

(i3, s1) and (i5, s4).

There is one seat at school s2 and one seat at school s3 to be inherited from

the first step. Since there is student i4 who was assigned a seat at school s2 in the

inheritance round of the first step and i4 was not matched to some school in step

one, there is no inheritance of the s2 seat at this step. Since all students who are

assigned a seat at school s3 in the inheritance round of the first step are matched to

some school in step one, the remaining seats of school s3 are inherited by students

i7 and i4. Thus, the student-school pairs in the inheritance round of the second step

are (i4, s2), (i7, s3) and (i4, s3). Since student i4 is already assigned one seat from

her best choice school (i.e. s3), then all student-school pairs containing her point to

that student-school pair (i.e. (i4, s2) 7→ (i4, s3)) and the student-school pair (i4, s3)

points to (i4, s3) and the match (i4, s3) is formed.

Since there is student i7 who was assigned a seat at school s3 in the inheritance

round of the second step and i7 was not matched to some school in step two, there

is no inheritance of the s3 seat at this step. Since the student who is assigned a seat

at school s2 in the inheritance round of the second step is matched to some school in

step two, the remaining seats of school s2 are inherited by students i8 and i7. Thus,

the student-school pairs in the inheritance round of the third step are (i7, s3), (i8, s2)

and (i7, s2). Since student i7 is already assigned one seat from her best choice school

(i.e. s2), then all student-school pairs containing her point to that student-school

pair (i.e. (i7, s3) 7→ (i7, s2)) and the student-school pair (i7, s2) points to (i7, s2) and

the match (i7, s2) is formed.

14There is always at least one cycle in each step. If some student appears in the same cycle or

in different cycles with different schools, then she is definitely assigned a seat at her top choice

among those schools while the other seats she was pointing to remain to be inherited later on.
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Since there is student i8 who was assigned a seat at school s2 in the inher-

itance round of the third step and i8 was not matched to some school in step

three, there is no inheritance of the s2 seat. Since the only student who is as-

signed a seat at school s3 in the inheritance round of the third step is matched to

some school in step three, the remaining seat of school s3 is inherited by student

i6. Thus, the student-school pairs in the inheritance round of the fourth step are

(i8, s2) and (i6, s3). Then, (i8, s2) points to (i6, s3) and (i6, s3) points to (i8, s2).

So, there is one cycle (i8, s2) 7→ (i6, s3) 7→ (i8, s2) leading to the following matches:

(i8, s3) and (i6, s2). We reach the matching obtained from the ETTC algorithm,

µE = {(i1, s2), (i2, s3), (i3, s1), (i4, s3), (i5, s4), (i6, s2), (i7, s2), (i8, s3)}. Notice that

the matching obtained from the ETTC algorithm differs from the TTC matching,

µT = {(i1, s2), (i2, s3), (i3, s3), (i4, s1), (i5, s4), (i6, s2), (i7, s2), (i8, s3)}.

Theorem 2. Let 〈I, S, q, P, F 〉 be a school choice problem and µE be the matching

obtained from the Equitable Top Trading Cycles mechanism. The singleton set {µE}
is a farsighted stable set.

The proof of Theorem 2 can be found in Appendix A.1. Since {µE} is a sin-

gleton set, internal stability (IS) is satisfied. We provide the intuition for ex-

ternal stability (ES) by means of Example 2. Take for instance the matching

µ0 = {(i1, s3), (i2, s1), (i3, s3), (i4, s3), (i5, s2), (i6, s4), (i7, s2), (i8, s2)}. Following the

steps as in the proof of Theorem 2, we construct a farsighted improving from µ0

to µE = {(i1, s2), (i2, s3), (i3, s1), (i4, s3), (i5, s4), (i6, s2), (i7, s2), (i8, s3)} = µ7. In the

first round of ETTC, there are two cycles, one cycle c1
1 = ((i1, s1), (i2, s2), (i3, s3))

and a second cycle c2
1 = ((i5, s3), (i2, s4)). Notice that student i2 is involved in

both cycles. Looking forward towards µE, the coalition of students and schools

belonging to c1
1, i.e. {i1, i2, i3, s1, s2, s3}, deviates from µ0 to reach the matching

µ1 = {(i1, s1), (i2, s2), (i3, s3), (i4, s3), (i5, i5), (i6, s4), (i7, s2), (i8, s2)} so that student

i1 joins school s1, student i2 joins school s2 and student i3 remains with school

s3. That is, each student is matched to the school from the pair student-school

in c1
1 she belongs to. By doing so, student i1 already vacates a slot at school s3.

Next, the coalition of students {i1, i2, i3} deviates from µ1 so that student i1 leaves

school s1, student i2 leaves school s2 and student i3 leaves school s3 to reach the

matching µ2 = {(i1, i1), (i2, i2), (i3, i3), (i4, s3), (i5, i5), (i6, s4), (i7, s2), (i8, s2)} where

all three students are unmatched. Next, the coalition of students and schools be-

longing to c2
1, i.e. {i2, i5, s3, s4}, deviates from µ2 to reach the matching µ3 =
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{(i1, i1), (i2, s4), (i3, i3), (i4, s3), (i5, s3), (i6, i6), (i7, s2), (i8, s2)} so that student i5 joins

school s3 and student i2 joins school s4. Next, the coalition of students {i2, i5} devi-

ates from µ3 so that student i2 leaves school s4 and student i5 leaves school s3 to reach

the matching µ4 = {(i1, i1), (i2, i2), (i3, i3), (i4, s3), (i5, i5), (i6, i6), (i7, s2), (i8, s2)} so

that both students are unmatched. Next, the students {i1, i2, i3, i5} join their schools

in µE leading to {(i1, s2), (i2, s3), (i3, s1), (i4, s3), (i5, s4), (i6, i6), (i7, i7), (i8, s2)} = µ5.

Notice that, in the second step, student i4 is already matched to s3 in µ5 and c1
2 =

((i4, s3)). Hence, she simply remains matched to s3 = µE(i4) along the farsighted

improving path. In the third step, given that c1
3 = ((i7, s2)), student i7 remains

matched to school s2 = µE(i7). In the fourth step, there is only one cycle c1
4

involving student-school pairs (i6, s3), (i8, s2). Since student i8 is already matched

to s2 and student i6 is unmatched in µ6, only student i8 leaves her school s2 to reach

{(i1, s2), (i2, s3), (i3, s1), (i4, s3), (i5, s4), (i6, i6), (i7, s2), (i8, i8)} = µ6 where both are

unmatched. Finally, student i6 joins school s2 and student i8 joins school s3 to reach

the ETTC matching µE = µ7.

Thus, µE ∈ φ(µ0). Again, it holds in general that, from any µ 6= µE there

exists a farsighted improving path leading to µE. Thus, the matching obtained from

the ETTC algorithm also preserves the property of being stable once students are

farsighted.

How much farsightedness from the students do we need to stabilize the matching

obtained from the ETTC algorithm? Let Ck = {c1
k, c

2
k, . . . , c

Lk
k } be the set of cycles

in Step k.B of the ETTC algorithm (formally described in Appendix A.1), for k =

1, . . . , k̄. Let τ(i, clk) = #{(j, s) ∈ clk | j = i} be the number of distinct pairs

involving student i in cycle clk and let τ(clk) = maxi∈{j∈I|(j,s)∈clk} τ(i, clk). From the

construction of a farsighted improving path in the proof of Theorem 2, we have that

the minimum degree of farsightedness that guarantees that students involve in any

cycle always reach their ETTC assignment is

τmax = max
k∈{1,...,k̄}

(
Lk∑
l=1

2τ(clk)

)
+ 1.

Corollary 3. Let 〈I, S, q, P, F 〉 be a school choice problem and µE be the matching

obtained from the Equitable Top Trading Cycles mechanism. The singleton set {µE}
is a horizon-k farsighted stable set for k ≥ τmax.

Notice that in Example 2, the farsighted improving path from µ0 to µE requires

a degree of farsightedness equal to 5 so that students i1, i2 and i3 have incentives
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to engage a move in µ0 looking forward towards µ5 where they already obtain their

ETTC assignment. Since student i2 is involved in two cycles in the first round of

ETTC, τmax is equal to 5. Thus, compared to the TTC, the ETTC improves in

terms of no justified envy, but requires more farsightedness on behalf of students.

6.2 (First) Clinch and Trade Algorithm

Morrill (2015) introduces two variations of the Top Trading Cycles mechanism for

selecting a matching for each school problem: the First Clinch and Trade mecha-

nism (FCT) and the Clinch and Trade mechanism (CT). Both mechanisms intend

to mitigate the following problem. In the TTC mechanism, if a student i’s most

preferred school is s and the student has one of the qs highest priorities at s, then

i is always assigned to s. However, until i has the highest priority at s, the TTC

mechanism allows i to trade her priority at other schools to be assigned to s. Such

trade may cause distortions regarding the elimination of justified envy.

In the First Clinch and Trade algorithm (FCT), a student that initially has one

of the qs highest priorities at a school s (she is guaranteed a seat at s), cannot trade

with another student to get s. The FCT algorithm runs basically the TTC algorithm

but, at each round, if a student points at a school where she is guaranteed a seat, the

student is assigned to the school and cannot trade her priority. For the remaining

students, the TTC is run and the students who have the highest priorities at some

schools are allowed to trade their priorities and are assigned their top choices.15

Example 3 (Morrill, 2015). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3} and S = {s1, s2}. Students’ preferences and schools’ priorities and

capacities are as follows.

Students

Pi1 Pi2 Pi3

s2 s1 s2

s1 s2 s1

Schools

Fs1 Fs2

qs 2 1

i1 i2

i2 i3

i3 i1
15Morrill (2015) shows that the FCT is Pareto efficient, strategy-proof, non-bossy, group

strategy-proof, reallocation proof and independent of the order in which cycles are processed.
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Let µF be the matching obtained from the FCT mechanism. A formal descrip-

tion of the FCT algorithm can be found in Morrill (2015) and Atay, Mauleon and

Vannetelbosch (2022a). By means of Example 3 we illustrate the mechanism behind

the FCT algorithm. In the first round, each student points to her top choice school.

That is, i1 points to s2, i2 points to s1 and i3 points to s2. Student i1 and student

i2 are guaranteed admissions to school s1 since both have one of the two highest

rankings at school s1. Student i2 is also guaranteed admission to school s2 since she

is ranked first at school s2. Student i2 is pointing to s1, and so she is clinched to

school s1 and the match (i2, s1) is formed. Student i1 is not pointing to a school

where she is guaranteed admission. Hence, she is not clinched to any school and she

participates next with i3 to the trading procedure. Schools s1 and s2 point to their

highest ranked student, respectively i1 and i2. Hence, there is no cycle and no match

is formed. In the second round, each student points to her top choice school that

has still available capacity. That is, i1 points to s2 and i3 points to s2. Guaranteed

admissions do not change. Hence, nor i1 nor i3 are clinched to some school and so

they participate next to the trading procedure. School s1 points to i1 while school s2

points now to i3 and so the match (i3, s2) is formed. Student i1 remains unmatched.

In the third round, each remaining student points to her preferred school that has

still available capacity. That is, student i1 points now to school s1. Since she is

guaranteed admission to school s1, she is clinched and assigned to school s1. We

obtain the matching µF = {(i1, s1), (i2, s1), (i3, s2)}.
The matching obtained from the FCT algorithm differs from the matching ob-

tained from the TTC algorithm, µT = {(i1, s2), (i2, s1), (i3, s1)}. In the TTC mech-

anism, students i1 and i2 first exchange their priorities to form the matches (i1, s2)

and (i2, s1). Student i1 has priority at s1 while student i2 has priority at s2. How-

ever, student i3 is ranked above student i1 at school s2. In addition, student i2 is

guaranteed admission at school s1. The FCT mechanism intends to remedy to such

drawback.

While the FCT algorithm does not update the students that are able to clinch

her most preferred school, the Clinch and Trade algorithm (CT) removes from the

priority list of each school the students that are guaranteed a seat. As a result, the

priorities of the remaining students weakly improve and thus, students that initially

are not guaranteed a seat at their most preferred school may now be guaranteed one

of the remaining seats. Let µC be the matching obtained from the CT mechanism.
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A formal description of the CT algorithm can be found in Morrill (2015) and Atay,

Mauleon and Vannetelbosch (2022a).16 In Example 3 both mechanisms lead to the

same matching.17

Theorem 3. Let 〈I, S, q, P, F 〉 be a school choice problem. Let µF and µC be the

matchings obtained from the First Clinch and Trade mechanism and the Clinch and

Trade mechanism, respectively. Both singleton sets {µF} and {µC} are farsighted

stable sets.

The proof is similar to the one for Theorem 1 and can be found in Atay, Mauleon

and Vannetelbosch (2022a). Since {µF} and {µC} are singleton sets, internal sta-

bility (IS) is satisfied.

We now provide the intuition for external stability (ES) of µF by means of

Example 3. Take for instance the matching µ0 = {(i1, s2), (i2, s1), (i3, s1)} = µT . We

now construct a farsighted improving from µ0 to µF = {(i1, s1), (i2, s1), (i3, s2)} = µ2.

First, we consider student i2 who is the only student to be clinched in the first round

of the FCT. Since student i2 is matched to school s1 in both µ0 and µF she does

not participate to any deviation and remains clinched to s1 along the farsighted

improving path. That is, (i2, s1) ∈ µl, l = 0, 1, 2. There is no cycle between

schools and students who are not clinched in the first round of the FCT. In the

second round of the FCT, none of the remaining students is clinched to some school.

However, student i3 and school s2 form a cycle. So, looking forward towards µT , the

coalition N0 = {i3, s2} deviates from µ0 so that student i3 joins school s2 to reach

the matching µ1 = {(i1, i1), (i2, s1), (i3, s2)}. Student i3 is matched to her preferred

school s2 in µ1 and she has a higher priority than i1 at s2. By doing so, student

i1 is pushed out of school s2. In the third round of the FCT, student i1 points

to school s1 and is guaranteed admission at school s1. So, from µ1, the coalition

N1 = {i1, s1} deviates so that student i1 joins school s1 to reach the matching

µ2 = {(i1, s1), (i2, s1), (i3, s2)} = µF . Thus, µF ∈ φ(µT ).

In fact, it holds in general that, from any µ 6= µF there exists a farsighted

improving path leading to µF . So, {µF} is a farsighted stable set and the match-

16Morrill (2015) shows that the CT mechanism is Pareto efficient and strategy-proof. Unlike the

TTC mechanism, the CT mechanism is bossy, not group strategy-proof, and not independent of

the order in which cycles are processed.
17In Example 1, µT = µF = µC = µE 6= µD. In Example 2, µE 6= µT = µF = µC 6= µD. In

Example 3, µT = µE 6= µF = µC = µD.
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ing obtained from the FCT algorithm preserves the property of being stable once

students are farsighted. Likewise, {µC} is a farsighted stable set.

Similarly to the TTC, we have that students belonging to a cycle only need to

look forward three steps ahead to have incentives for engaging a move towards the

matches they have in the matching obtained from the FCT (CT) algorithm, µF

(µC).

Corollary 4. Let 〈I, S, q, P, F 〉 be a school choice problem. Let µF and µC be the

matchings obtained from the First Clinch and Trade mechanism and the Clinch and

Trade mechanism, respectively. Both singleton sets {µF} and {µC} are horizon-k

farsighted stable set for k ≥ 3.

7 Conclusion

We have considered priority-based school choice problems. Once students are far-

sighted, the matching obtained from the TTC mechanism becomes stable: a sin-

gleton set consisting of the TTC matching is a farsighted stable set. However, the

matching obtained from the DA mechanism may not belong to any farsighted stable

set. Hence, the TTC mechanism provides an assignment that is not only Pareto

efficient but also farsightedly stable. Moreover, looking forward three steps ahead

is already sufficient for stabilizing the matching obtained from the TTC. Since the

choice between the DA mechanism or the TTC mechanism usually depends on the

priorities of the policy makers, farsightedness and Pareto efficiency may tip the

balance in favor of TTC or one of its variations.

In this paper, we have focused on priority-based school choice problems where

arbitrary groups of students (and schools) can move together and where schools

could have more than one seat of capacity. We have shown that the TTC matching

is a farsighted stable set when allowing deviations of coalitions of arbitrary size.

In matching theory, it is often assumed that only individual or pairwise deviations

are feasible and most results are robust to deviations of coalitions of arbitrary size.

However, this is not always true once agents are farsighted. In a follow-up paper,

Atay, Mauleon and Vannetelbosch (2022b) have found that, for one-to-one priority-

based matching problems (i.e., problems with only one vacant seat (object) to be

assigned among the set of agents) where only individual or pairwise deviations are

allowed, the TTC matching is stable provided agents are sufficiently farsighted.
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However, we have shown in the present paper that, once there are more than one

seat to be allocated, more cooperation among students is needed to sustain the TTC

matching as farsightedly stable.18
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A Appendix

A.1 Equitable Top Trading Cycles Algorithm

The Equitable Top Trading Cycles mechanism (Hakimov and Kesten, 2018) finds

a matching by means of the following Equitable Top Trading Cycles algorithm

(ETTC).

Step 1. Set q1
s = qs for all s ∈ S where q1

s is the initial capacity of school s at Step 1.

1.A. (Inheritance) All seats are available to inherit in the first step and students

are assigned seats according to the priority orders F to form student-school

pairs. Let F+1(s, i) = {j ∈ I | Fs(j) < Fs(i)} be the set of students who

have higher priority than student i for school s in Step 1. Let IS1 = {(i, s) ∈
I×S | #F+1(s, i) ≤ q1

s} be the set of student-school pairs formed by assigning

18In fact, one can show that Theorem 1 holds when restricting the deviations to coalitions

involving at most two students. However, longer farsighted improving paths for reaching the TTC

matching from any other matching would be required.
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students one-by-one to the schools while respecting their capacities. In other

words, IS1 consists of student-school pairs such that each school s pairs with

qs highest priority students.

1.B. (Pointing) Each student-school pair (i, s) ∈ IS1 points to the student-school

pair (i′, s′) ∈ IS1 such that (1) s′ is the best choice of student i in Pi, and (2)

student i′ has the highest priority in Fs among students who are assigned a seat

at s′, i.e. (i, s) 7→ (i′, s′) such that Fs(i
′) < Fs(l) for any other (l, s′) ∈ IS1.

Notice that if (i, s) ∈ IS1 and s is the best choice school for i, then all pairs

(i, s′) ∈ IS1 point to (i, s). Since there is a finite number of students and

schools, there is at least one cycle. Let C1 = {c1
1, c

2
1, . . . , c

L1
1 } be the set of

cycles in Step 1.B where L1 ≥ 1 is the number of cycles in Step 1.B.

1.C. (Trading) If student i appears in the same cycle or in different cycles with

different schools, then she is assigned a seat at her top choice among those

schools. That is, for each i ∈ I such that there exists (i, s) 7→ (i′, s′) in cl1 and

(i, ŝ) 7→ (i′′, s′′) in cl
′

1 , possibly cl1 = cl
′

1 , m1(i) = s′ such that s′Pis
′′. The seats

at all other schools than her top choice she points to in those cycles remain

to be inherited. If student i only appears once in a cycle, say cl1, then she is

matched with the school that is in the student-school pair she points to, i.e.

if (i, s) 7→ (i′, s′) (possibly s = s′) in cl1, then m1(i) = s′. Finally, if there is a

student-school pair participating in a cycle, (i, s) ∈ cl1, and another student-

school pair with the same student and a different school not participating at

any cycle, (i, s′) /∈ cl
′

1 , cl
′

1 ∈ C1, then this seat at school s′ remains to be

inherited.

Let I1 = {i ∈ I | (i, s) ∈ cl1, cl1 ∈ C1} be the set of students involved in a

cycle in Step 1. Let M1 =
⋃
i∈I1(i,m1(i)) be all the matches formed between

students and schools in Step 1. All student-school pairs that involve students

who are matched in Step 1 are removed. Let IS−1 = {(i, s) ∈ IS1 | i ∈ I1}
be the set of pairs from IS1 that are removed in Step 1. Let IS+

1 = {(i, s) ∈
IS1 | i /∈ I1} be the set of pairs from IS1 that are not removed in Step 1. Let

S+
1 = {s ∈ S | (i, s) ∈ IS+

1 , i ∈ I} be the set of schools that were assigned in

Step 1.A some student who are not matched in Step 1.C.

Let Î1 = I \ I1 be the set of students who have not been assigned a seat at the

end of Step 1. If Î1 6= ∅, then go to Step 2.A. Otherwise, go to End.
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Step k ≥ 2. At the beginning of Step k, the remaining capacity of school s is qks and the

set of remaining students is Îk−1.

k.A. (Inheritance) Let F+k(s, i) = {j ∈ Îk−1 | Fs(j) < Fs(i)} be the set of students

who have higher priority than student i for school s in Step k. Let ISk =

IS+
k−1 ∪ {(i, s) ∈ Îk−1 × S | #F+k(s, i) ≤ qks and s /∈ S+

k−1} be the set of

student-school pairs assigned in Step k.A where IS+
k−1 = {(i, s) ∈ ISk−1 | i /∈

Ik−1} are the student-school pairs that were not removed in Step k − 1 and

{(i, s) ∈ Îk−1×S | #F+k(s, i) ≤ qks and s /∈ S+
k−1} are the student-school pairs

that are inherited and formed by assigning remaining students one-by-one to

the schools while respecting their capacities.

k.B. (Pointing) Each student-school pair (i, s) ∈ ISk points to the student-school

pair (i′, s′) ∈ ISk such that (1) s′ is the best choice of student i in Pi, and (2)

student i′ has the highest priority in Fs among students that are assigned a seat

at s′, i.e. (i, s) 7→ (i′, s′) such that Fs(i
′) < Fs(l) for any other (l, s′) ∈ ISk.

Since there is a finite number of students and schools, there is at least one

cycle. Let Ck = {c1
k, c

2
k, . . . , c

Lk
k } be the set of cycles in Step k.B where Lk ≥ 1

is the number of cycles in Step k.B.

k.C. (Trading) If student i appears in the same cycle or in different cycles with

different schools, then she is assigned a seat at her top choice among those

schools. That is, for each i ∈ Îk−1 such that there exists (i, s) 7→ (i′, s′) in

clk and (i, ŝ) 7→ (i′′, s′′) in cl
′

k , possibly clk = cl
′

k , mk(i) = s′ such that s′Pis
′′.

The seats at all other schools than her top choice she points to in those cycles

remain to be inherited. If student i only appears once in a cycle, say clk, then

she is matched with the school that is in the student-school pair she points to,

i.e. if (i, s) 7→ (i′, s′) (possibly s = s′) in clk, then mk(i) = s′. Finally, if there is

a student-school pair participating in a cycle, (i, s) ∈ clk, and another student-

school pair with the same student and a different school not participating at

any cycle, (i, s′) /∈ cl
′

k , cl
′

k ∈ Ck, then this seat at school s′ remains to be

inherited.

Let Ik = {i ∈ Îk−1 | (i, s) ∈ clk, clk ∈ Ck} be the set of students involved in a

cycle in Step k. Let Mk =
⋃
i∈Ik(i,mk(i)) be all the matches formed between

students and schools in Step k. All student-school pairs that involve students

who are matched in Step k are removed. Let IS−k = {(i, s) ∈ ISk | i ∈ Ik}
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be the set of pairs from ISk that are removed in Step k. Let IS+
k = {(i, s) ∈

ISk | i /∈ Ik} be the set of pairs from ISk that are not removed in Step k. Let

S+
k = {s ∈ S | (i, s) ∈ IS+

k , i ∈ I} be the set of schools that were assigned in

Step k.A some student who are not matched in Step k.C.

Let Îk = Îk−1 \ Ik be the set of students who have not been assigned a seat at

the end of Step k. If Îk 6= ∅, then go to Step k+1.A. Otherwise, go to End.

End The algorithm stops when all students have been removed. Let k̄ ≥ 1 be the

step at which the algorithm stops. Let µE denote the matching obtained from

the ETTC algorithm and it is given by µE =
⋃k̄
k=1Mk.

Proof of Theorem 2

Since {µE} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µE, we need to show that φ(µ) 3 µE. We build in steps a farsighted

improving path from µ to µE. Let µ̃0 = µ.

Step k.1. (k ≥ 1) If (i, µE(i)) ∈ µ̃k−1 for all i ∈ {j ∈ I | (j, s) ∈ c1
k} and 1 6= Lk then go

to Step k.2 with µ′′′k,1 = µ̃k−1. If (i, µE(i)) ∈ µ̃k−1 for all i ∈ {j ∈ I | (j, s) ∈ c1
k}

and 1 = Lk then go to Step k.End with µ′′′k,Lk
= µ̃k−1.

Otherwise, for each i ∈ {j ∈ I | (j, s) ∈ c1
k}, let c1

k(i) = {(i, sil′)}τ(i,c1k)

l′=1 be

such that (i, sil
′
) ∈ c1

k and sil
′

= sol′ 6= sil
′+1 = sol′+1

with ol′ < ol′+1 for l′ =

1, ..., τ(i, c1
k)− 1. That is, c1

k(i) is an ordered set of the pairs involving student

i in cycle c1
k where τ(i, c1

k) = #{(j, s) ∈ c1
k | j = i} is the number of distinct

pairs involving student i in cycle c1
k. Let τ(c1

k) = maxi∈{j∈I|(j,s)∈c1k} τ(i, c1
k).

Let Λk,1(s) = #{(i, s′) /∈ µ̃k−1 | (i, s′) = (i, si1) with (i, si1) ∈ c1
k(i) and s′ = s}

be the number of students who are not yet matched in µ̃k−1 to school s that

ranks them among the first qs positions and is ranked first in their ordered set.

If (i, µE(i)) /∈ µ̃k−1 for some i ∈ {j ∈ I | (j, s) ∈ c1
k} then µ′k,1 = µ̃k−1 −

{(i, µ̃k−1) | (i, s) ∈ c1
k and µ̃k−1(i) 6= i} + {(i, si1) | i ∈ {j ∈ I | (j, s) ∈

c1
k}} − {(j, s) ∈ µ̃k−1 | Λs

j(µ̃k−1) < Λk,1(s)− qs + #µ̃k−1(s)} where Λs
j(µ̃k−1) =

#{l ∈ I | (l, s) ∈ µ̃k−1 and Fs(l) > Fs(j)} is the number of students who are

matched to school s in µ̃k−1 and have a lower priority than student j. Looking

forward towards µE students belonging to {j ∈ I | (j, s) ∈ c1
k} weakly prefer

µE to µ̃k−1 with at least one of them strictly preferring µE.
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Next, if (i, µ′k,1(i)) = (i, µE(i)) and c1
k = {(i, µE(i))} then µ′′k,1 = µ′k,1. Oth-

erwise, µ′′k,1 = µ′k,1 − {(i, si1) | i ∈ {j ∈ I | (j, s) ∈ c1
k}} so that all students

involved in c1
k are unmatched. If τ(i, c1

k) = 1 for all i ∈ {j ∈ I | (j, s) ∈ c1
k}

and 1 6= Lk, then go to Step k.2. If τ(i, c1
k) = 1 for all i ∈ {j ∈ I | (j, s) ∈ c1

k}
and 1 = Lk, then go to Step k.End with µ′′′k,Lk

= µ′′k,1. If τ(i, c1
k) 6= 1 for some

i ∈ {j ∈ I | (j, s) ∈ c1
k} then go to Step k.1.A.

Step k.1.A Take all i ∈ Ĩ1(c1
k) = {j ∈ I | (j, s) ∈ c1

k and τ(j, c1
k) > 1}, where Ĩ1(c1

k)

is the set of all students who are involved more than once in cycle c1
k. Let

P (si2) = {(j, s) | j ∈ Ĩ1(c1
k) and s = si2} be the set of student-school pairs

involving school si2 in cycle ck1. Let l̂(si2) = #µ′′k,1(si2) + #P (si2). From µ′′k,1,

looking forward towards µE, each student i ∈ Ĩ1(c1
k) matches with school si2.

In the case more students are assigned to some school than the number of

available slots, then students with a lower priority are dropped off. Hence,

from µ′′k,1 we reach the matching

µ2
k,1 = µ′′k,1 + {(i, si2) | i ∈ Ĩ1(c1

k)}

−
{

(jl, s
i12) | Fsi12(jl) > Fsi12(j′) for all j′ ∈ µ′′k,1(si

12), j′ 6= jl

}l̂(si12)

l=1
if l̂(si

12) ≥ qsi12

−
{

(jl, s
i22) | Fsi22(jl) > Fsi22(j′) for all j′ ∈ µ′′k,1(si

22), j′ 6= jl

}l̂(si12)

l=1
if l̂(si

22) ≥ qsi22

...

−
{

(jl, s
is̄2) | Fsis̄2(jl) > Fsis̄2(j′) for all j′ ∈ µ′′k,1(si

s̄2), j′ 6= jl

}l̂(sis̄2)

l=1
if l̂(si

s̄2) ≥ qsis̄2 ,

where {si12, si
22, . . . , si

s̄2} = {s ∈ S | s = si2 for i ∈ Ĩ1(c1
k)} and s̄ = #{s ∈

S | s = si2 for i ∈ Ĩ1(c1
k)}.

Looking forward towards µE students belonging to Ĩ1(c1
k) prefer µE to µ2

k,1.

Next, each student i ∈ Ĩ1(c1
k) leaves her school si2 to become unmatched and

guaranteeing a free slot at school si2. We reach µ2′

k,1 = µ2
k,1 − {(i, si2) | i ∈

Ĩ1(c1
k)}.

Next, take all i ∈ Ĩ2(c1
k) = {j ∈ I | (j, s) ∈ c1

k and τ(j, c1
k) > 2}, where Ĩ2(c1

k)

is the set of all students who are involved more than twice in cycle c1
k. Let

P (si3) = {(j, s) | j ∈ Ĩ2(c1
k) and s = si3} be the set of student-school pairs

involving school si3 in cycle c1
k. Let l̂(si3) = #µ2′

k,1(si3) + #P (si3). From µ2′

k,1,

looking forward towards µE, each student i ∈ Ĩ2(c1
k) matches with school si3.
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In the case more students are assigned to some school than the number of

available slots, then students with a lower priority are dropped off. Hence,

from µ2′

k,1 we reach the matching

µ3
k,1 = µ2′

k,1 + {(i, si3) | i ∈ Ĩ2(c1
k)}

−
{

(jl, s
i13) | Fsi13(jl) > Fsi13(j′) for all j′ ∈ µ2′

k,1(si
13), j′ 6= jl

}l̂(si13)

l=1
if l̂(si

13) ≥ qsi13

−
{

(jl, s
i23) | Fsi23(jl) > Fsi23(j′) for all j′ ∈ µ2′

k,1(si
23), j′ 6= jl

}l̂(si13)

l=1
if l̂(si

23) ≥ qsi23

...

−
{

(jl, s
is̄3) | Fsis̄3(jl) > Fsis̄3(j′) for all j′ ∈ µ2′

k,1(si
s̄3), j′ 6= jl

}l̂(sis̄3)

l=1
if l̂(si

s̄3) ≥ qsis̄3 ,

where {si13, si
23, . . . , si

s̄3} = {s ∈ S | s = si3 for i ∈ Ĩ2(c1
k)} and s̄ = #{s ∈

S | s = si3 for i ∈ Ĩ2(c1
k)}.

Looking forward towards µE students belonging to Ĩ2(c1
k) prefer µE to µ3

k,1.

Next, each student i ∈ Ĩ2(c1
k) leaves her school si3 to become unmatched and

guaranteeing a free slot at school si3. We reach µ3′

k,1 = µ3
k,1 − {(i, si3) | i ∈

Ĩ2(c1
k)}.

We repeat this process until we reach in the end the matching µ′′′k,1 = µ
τ(c1k)

k,1 −
{(i, siτ(c1k)) | i ∈ Ĩτ(c1k)−1(c1

k)} where all students involved in c1
k are unmatched

and each school s involved in c1
k has at least #{(i, s′) ∈ c1

k | s′ = s} free slots.

Step k.l. (l > 1) If (i, µE(i)) ∈ µ′′′k,l−1 for all i ∈ {j ∈ I | (j, s) ∈ clk} and l 6= Lk then

go to Step k.l + 1 with µ′′′k,l = µ′′′k,l−1. If (i, µE(i)) ∈ µ′′′k,l−1 for all i ∈ {j ∈ I |
(j, s) ∈ clk} and l = Lk then go to Step k.End with µ′′′k,Lk

= µ′′′k,l−1.

Otherwise, for each i ∈ {j ∈ I | (j, s) ∈ clk}, let clk(i) = {(i, sil′)}τ(i,clk)

l′=1 be

such that (i, sil
′
) ∈ clk and sil

′
= sol′ 6= sil

′+1 = sol′+1
with ol′ < ol′+1 for l′ =

1, ..., τ(i, clk)− 1. That is, clk(i) is an ordered set of the pairs involving student

i in cycle clk where τ(i, clk) = #{(j, s) ∈ clk | j = i} is the number of distinct

pairs involving student i in cycle clk. Let τ(clk) = maxi∈{j∈I|(j,s)∈clk} τ(i, clk).

Let Λk,l(s) = #{(i, s′) /∈ µ′′′k,l−1 | (i, s′) = (i, si1) with (i, si1) ∈ clk(i) and s′ =

s} be the number of students who are not yet matched in µ′′′k,l−1 to school s

that ranks them among the first qs positions and is ranked first in their ordered

set.
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If (i, µE(i)) /∈ µ′′′k,l−1 for some i ∈ {j ∈ I | (j, s) ∈ clk} then µ′k,l = µ′′′k,l−1 −
{(i, µ′′′k,l−1(i)) | (i, s) ∈ clk and µ′′′k,l−1(i) 6= i} + {(i, si1) | i ∈ {j ∈ I | (j, s) ∈
clk}}−{(j, s) ∈ µ′′′k,l−1 | Λs

j(µ
′′′
k,l−1) < Λk,l(s)−qs+#µ′′′k,l−1(s)} where Λs

j(µ
′′′
k,l−1) =

#{l′ ∈ I | (l′, s) ∈ µ′′′k,l−1 and Fs(l
′) > Fs(j)} is the number of students who

are matched to school s in µ′′′k,l−1 and have a lower priority than student j.

Looking forward towards µE students belonging to {j ∈ I | (j, s) ∈ clk} weakly

prefer µE to µ′′′k,l−1 with at least one of them strictly preferring µE.

Next, if (i, µ′k,l(i)) = (i, µE(i)) and clk = {(i, µE(i))} then µ′′k,l = µ′k,l. Oth-

erwise, µ′′k,l = µ′k,l − {(i, si1) | i ∈ {j ∈ I | (j, s) ∈ clk}} so that all students

involved in clk are unmatched. If τ(i, clk) = 1 for all i ∈ {j ∈ I | (j, s) ∈ clk} and

l 6= Lk, then go to Step k.l + 1. If τ(i, clk) = 1 for all i ∈ {j ∈ I | (j, s) ∈ clk}
and l = Lk, then go to Step k.End with µ′′′k,Lk

= µ′′k,l. If τ(i, clk) 6= 1 for some

i ∈ {j ∈ I | (j, s) ∈ clk} then go to Step k.l.A.

Step k.l.A Take all i ∈ Ĩ1(clk) = {j ∈ I | (j, s) ∈ clk and τ(j, clk) > 1}, where Ĩ1(clk)

is the set of all students who are involved more than once in cycle clk. Let

P (si2) = {(j, s) | j ∈ Ĩ1(clk) and s = si2} be the set of student-school pairs

involving school si2 in cycle clk. Let l̂(si2) = #µ′′k,l(s
i2) + #P (si2). From µ′′k,l,

looking forward towards µE, each student i ∈ Ĩ1(clk) matches with school si2.

In the case more students are assigned to some school than the number of

available slots, then students with a lower priority are dropped off. Hence,

from µ′′k,l we reach the matching

µ2
k,l = µ′′k,l + {(i, si2) | i ∈ Ĩ1(clk)}

−
{

(jl′ , s
i12) | Fsi12(jl′) > Fsi12(j′) for all j′ ∈ µ′′k,l(si

12), j′ 6= jl′
}l̂(si12)

l′=1
if l̂(si

12) ≥ qsi12

−
{

(jl′ , s
i22) | Fsi22(jl′) > Fsi22(j′) for all j′ ∈ µ′′k,l(si

22), j′ 6= jl′
}l̂(si12)

l′=1
if l̂(si

22) ≥ qsi22

...

−
{

(jl′ , s
is̄2) | Fsis̄2(jl′) > Fsis̄2(j′) for all j′ ∈ µ′′k,l(si

s̄2), j′ 6= jl′
}l̂(sis̄2)

l′=1
if l̂(si

s̄2) ≥ qsis̄2 ,

where {si12, si
22, . . . , si

s̄2} = {s ∈ S | s = si2 for i ∈ Ĩ1(clk)} and s̄ = #{s ∈
S | s = si2 for i ∈ Ĩ1(clk)}.

Looking forward towards µE students belonging to Ĩ1(clk) prefer µE to µ2
k,l.

Next, each student i ∈ Ĩ1(clk) leaves her school si2 to become unmatched and
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guaranteeing a free slot at school si2. We reach µ2′

k,l = µ2
k,l − {(i, si2) | i ∈

Ĩ1(clk)}.

Next, we repeat this process with students who are involved more than twice

in cycle clk until we reach in the end the matching µ′′′k,l = µ
τ(clk)

k,l − {(i, siτ(clk)) |
i ∈ Ĩτ(clk)−1(clk)} where all students involved in clk are unmatched and each

school s involved in clk has at least #{(i, s′) ∈ clk | s′ = s} free slots.

If l 6= Lk, then go to Step k.l+1. Otherwise, go to Step k.End with µ′′′k,L1
= µ′′′k,l.

Step k.End. We have reached µ′′′k,Lk
where each student i involved in Ck is either matched to

µE(i) or unmatched and each school s involved in Ck has at least #{(i, s′) ∈⋃Lk

l=1 c
l
k | s′ = s and µ′′′k,Lk

(i) 6= µE(i)} free slots. Next, those unmatched

students join the school they point to in Ck to form the matching µ̃k = µ′′′k,Lk
+

{(i, s) ∈ Mk | (i, s) /∈ µ′′′k,Lk
} so that each student i involved in Ck is matched

to her school µE(i). If µ̃k = µE then the process ends. Otherwise, go to Step

k+1.

End. The process goes on until we reach µ̃k̄ =
⋃k̄
k=1Mk = µE, where k̄ ≥ 1.
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