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We consider priority-based school choice problems with farsighted students. We show that 
a singleton set consisting of the matching obtained from the Top Trading Cycles (TTC) 
mechanism is a farsighted stable set. However, the matching obtained from the Deferred 
Acceptance (DA) mechanism may not belong to any farsighted stable set. Hence, the TTC 
mechanism provides an assignment that is not only Pareto efficient but also farsightedly stable. 
Moreover, looking forward three steps ahead is already sufficient for stabilizing the matching 
obtained from the TTC. In addition, we show that variations of TTC that improve in terms 
of no justified envy are farsightedly stable, but may require more farsightedness on behalf of 
students.

1. Introduction

Abdulkadiroğlu and Sönmez (2003) formulate the school choice problem of assigning students to schools as a mechanism de-

sign problem.1 Each student has strict preferences over all schools and each school has a strict priority ordering imposed by state 
or local laws of all students. The outcome of a school choice problem is a matching that assigns schools to students such that 
each student is assigned at most one school and no school is assigned to more students than its capacity. Two prominent mecha-

nisms used for priority-based matching are the Gale and Shapley’s (1962) Deferred Acceptance (DA) mechanism and the Shapley 
and Scarf’s (1974) Top Trading Cycles (TTC) mechanism. Both mechanisms are strategy-proof: truthful preference revelation is a 
weakly dominant strategy for students.2 On the one hand, the TTC mechanism is Pareto efficient while the DA mechanism may 
select an inefficient matching. On the other hand, the DA mechanism is stable while the TTC mechanism may select an unstable 
matching.

A stable matching in the context of school choice eliminates justified envy in the sense that there is no unmatched student-school 
pair (𝑖, 𝑠) where student 𝑖 prefers school 𝑠 to her assignment and she has higher priority than some other student who is assigned a seat 
at school 𝑠. Since only the preferences of students matter in the context of school choice, the stable matching that results from the DA 
mechanism Pareto dominates any other matching that eliminates justified envy and is strategy-proof. However, this matching may 
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1 Abdulkadiroğlu and Andersson (2023) provide an extensive survey of school choice. See also Roth and Sotomayor (1990) or Haeringer (2017) for an introduction 

to matching problems.
2 Reny (2022) introduces the Priority-Efficient (PE) mechanism that always selects a Pareto efficient matching that dominates the DA stable matching, but PE is 
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not strategy-proof. Another attempt to improve the efficiency of the DA mechanism can be found in Kesten (2010).
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still be Pareto-dominated.3 A Pareto efficient and strategy-proof matching is obtained by the TTC mechanism. There is no mechanism 
that is both Pareto efficient and stable.4

Experimental and empirical studies suggest that individuals often differ in their degree of farsightedness, i.e., their ability to 
forecast how others will react to the decisions they make. Recent experiments on network formation provide evidence in favor of a 
mixed population consisting of both myopic and (limited) farsighted individuals (see Kirchsteiger et al., 2016; Teteryatnikova and 
Tremewan, 2020). The aim of this paper is to provide a theoretical study of how the presence of farsighted students affects the stability 
of different mechanisms used for priority-based matching problems.

Up to now, it has been assumed that all students are myopic when they decide to join or leave some school. Myopic students do 
not anticipate that other students may react to their decisions. Coalitions of farsighted students can anticipate the actions of other 
students and consider the end matching that their deviations may lead to. For instance, looking forward joining her favorite school 
𝑠′ whose capacity is full, a farsighted student 𝑖 may join first the school 𝑠 where she has priority and thereby pushes student 𝑗 out 
of school 𝑠. Later on, she can exchange her priority at school 𝑠 with another student 𝑘 who has priority at school 𝑠′, prefers 𝑠 to 𝑠′
and is ranked worse than 𝑗 at 𝑠. In the end matching both students 𝑖 and 𝑘 end up with their favorite school. In the context of school 
choice, our paper is the first to study the stable matchings when students are farsighted.

Does the TTC mechanism lead to a stable matching when students become farsighted? To address this question, we adopt the 
notion of farsighted stable set for school choice problems to study the matchings that are stable when students farsightedly apply to 
schools while schools myopically and mechanically enroll students.5 A farsighted improving path for school choice problems consists 
of a sequence of matchings that can emerge when farsighted students form or destroy matches based on the improvement the end 
matching offers them relative to the current one while myopic schools always accept any student on their priority lists unless they 
have full capacity. In the case of full capacity, a school accepts to replace the current match by another match if each student who 
leaves the school is replaced by a newly enrolled student who has a higher priority. A set of matchings is a farsighted stable set if it 
satisfies (Internal Stability) for any two matchings belonging to the set, there is no farsighted improving path connecting from one 
matching to the other one, and (External Stability) there always exists a farsighted improving path from every matching outside the 
set to some matching within the set.

We show that, once students are farsighted, the matching obtained from the TTC algorithm becomes stable, and moreover, a 
singleton set consisting of the TTC matching is a farsighted stable set. In fact, we construct a farsighted improving path from any 
matching leading to the TTC matching. Along the farsighted improving path, students belonging to cycles sequentially act in the 
order of the formation of cycles in the TTC algorithm. Looking forward towards the end matching (i.e. the TTC matching), students 
belonging to a cycle first get a seat at the school they have priority. Second, they leave that school and thereby guarantee a free seat 
at that school. Third, they join the school they are matched to in the TTC matching.

Thus, the matching obtained from the TTC algorithm is not only Pareto efficient and strategy-proof, it is also farsightedly stable. 
On the contrary, the matching obtained from the DA algorithm may not belong to any farsightedly stable set. In addition, starting 
from any matching, students only need to look forward (at least) three steps ahead to have incentives for engaging a move towards the 
matches they have in the matching obtained from the TTC algorithm. Hence, little farsightedness is already sufficient for stabilizing 
the matching obtained from the TTC algorithm.

Hakimov and Kesten (2018) introduce the Equitable Top Trading Cycles (ETTC) mechanism, a variation of the TTC mechanism 
for selecting a matching that intends to be more equitable or fair by eliminating avoidable justified envy situations. We show that a 
singleton set consisting of the ETTC is a farsighted stable set. However, compared to the TTC, the ETTC requires more farsightedness 
on behalf of students; i.e., students need to look forward more than three steps ahead to have incentives to move towards their ETTC 
partners. Morrill (2015) proposes both the First Clinch and Trade (FCT) mechanism and the Clinch and Trade (CT) mechanism in order 
to reduce the distortions the TTC may cause regarding the elimination of justified envy. We show that the matchings obtained from 
those two variations are farsightedly stable too whenever students belonging to a cycle look forward at least three steps ahead. The 
TTC algorithm as well as its three variations leads to Pareto efficient matchings. One may be tempted to infer that any Pareto efficient 
matching can be stabilized once students are farsighted. However, we show that Pareto efficiency is not a sufficient condition for a 
matching to be farsightedly stable.6 Notice that the TTC algorithm and these three variations lead also to strategy-proof matchings. 
Unfortunately, Pareto efficiency and strategy-proofness do not guarantee that the outcome of a mechanism belongs to a farsighted 
stable set.

To sum up, farsightedness stabilizes the matching obtained from the TTC algorithm while destabilizes the matching obtained from 
the DA algorithm, and so may tip the balance in favor of TTC or one of its variations.

In addition, Abdulkadiroğlu et al. (2020) provide both theoretical and empirical results supporting the TTC mechanism over 
alternative mechanisms. The TTC mechanism is justified envy minimal in the class of Pareto efficient and strategy-proof mechanisms 
in priority-based one-to-one matching problems. Justified envy minimal means that the mechanism satisfies Pareto efficiency with the 
minimal amount of (myopic) instability. In priority-based many-to-one matching problems, the TTC mechanism admits less justified 

3 Doğan and Ehlers (2021) characterize the priority profiles for which there exists a Pareto improvement over the DA matching that is minimally unstable among 
Pareto efficient matchings.

4 See e.g. Roth (1982). Che and Tercieux (2019) show that both Pareto efficiency and stability can be achieved asymptotically using DA and TTC mechanisms when 
agents have uncorrelated preferences.

5 See Chwe (1994), Mauleon et al. (2011), Ray and Vohra (2015, 2019), Herings et al. (2019, 2020), Luo et al. (2021) for definitions of the farsighted stable set.
6 The matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the Boston mechanism) may not belong to any farsighted stable set. The IA mechanism 
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envy than the Serial Dictatorship mechanism in an average sense. Recently, Doğan and Ehlers (2022) show that, for any stability 
comparison satisfying three basic properties, the TTC mechanism is minimally unstable among Pareto efficient and strategy-proof 
mechanisms when schools have unit capacities.

The paper is organized as follows. In Section 2, we introduce priority-based school choice problems. In Section 3, we provide a 
formal description of the TTC mechanism and its algorithm. In Section 4, we introduce the notions of farsighted improving path and 
farsighted stable set for school choice problems, and we provide our main result. In Section 5, we look at how much farsightedness 
is needed for getting our main result. In Section 6, we consider variations of the TTC mechanism. In Section 7, we conclude.

2. School choice problems

A school choice problem is a list ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ where

(i) 𝐼 = {𝑖1, ..., 𝑖𝑛} is the set of students,

(ii) 𝑆 = {𝑠1, ..., 𝑠𝑚} is the set of schools,

(iii) 𝑞 = (𝑞𝑠1 , ..., 𝑞𝑠𝑚 ) is the quota vector where 𝑞𝑠 is the number of available seats at school 𝑠,
(iv) 𝑃 = (𝑃𝑖1 , ..., 𝑃𝑖𝑛 ) is the preference profile where 𝑃𝑖 is the strict preference of student 𝑖 over the schools and her outside option,

(v) 𝐹 = (𝐹𝑠1 , ..., 𝐹𝑠𝑚 ) is the strict priority structure of the schools over the students.

Let 𝑖 be a generic student and 𝑠 be a generic school. We write 𝑖 for singletons {𝑖} ⊆ 𝐼 and 𝑠 for singletons {𝑠} ⊆ 𝑆 . The preference 
𝑃𝑖 of student 𝑖 is a linear order over 𝑆 ∪ 𝑖. Student 𝑖 prefers school 𝑠 to school 𝑠′ if 𝑠𝑃𝑖𝑠′. School 𝑠 is acceptable to student 𝑖 if 𝑠𝑃𝑖𝑖. 
We often write 𝑃𝑖 = 𝑠, 𝑠′, 𝑠′′ meaning that student 𝑖’s most preferred school is 𝑠, her second best is 𝑠′, her third best is 𝑠′′ and any 
other school is unacceptable for her. Let 𝑅𝑖 be the weak preference relation associated with the strict preference relation 𝑃𝑖 .7

The priority 𝐹𝑠 of school 𝑠 is a linear order over 𝐼 . That is, 𝐹𝑠 assigns ranks to students according to their priority for school 𝑠. 
The rank of student 𝑖 for school 𝑠 is denoted 𝐹𝑠(𝑖) and 𝐹𝑠(𝑖) < 𝐹𝑠(𝑗) means that student 𝑖 has higher priority for school 𝑠 than student 
𝑗. For 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼 , let 𝐹+(𝑠, 𝑖) = {𝑗 ∈ 𝐼 ∣ 𝐹𝑠(𝑗) < 𝐹𝑠(𝑖)} be the set of students who have higher priority than student 𝑖 for school 𝑠.

A matching 𝜇 for a school choice problem is a set of ordered pairs {(𝑖, 𝑗)}𝑖∈𝐼,𝑗∈𝑆∪{𝑖} such that for all 𝑖 ∈ 𝐼 and all 𝑠 ∈ 𝑆 the 
following hold: (i) for each 𝑖 ∈ 𝐼 there is a unique 𝑗 ∈ 𝑆 ∪ {𝑖} with (𝑖, 𝑗) ∈ 𝜇, (ii) for each 𝑠 ∈ 𝑆 it holds that #{𝑖 ∈ 𝐼 ∣ (𝑖, 𝑠) ∈ 𝜇} ≤ 𝑞𝑠. 
For 𝑖 ∈ 𝐼 we write 𝑗 = 𝜇(𝑖) if (𝑖, 𝑗) ∈ 𝜇; for 𝑠 ∈ 𝑆 we write 𝑖 ∈ 𝜇(𝑠) if (𝑖, 𝑠) ∈ 𝜇. Condition (i) means that student 𝑖 is assigned a seat at 
school 𝑠 under 𝜇 if 𝜇(𝑖) = 𝑠 and is unassigned under 𝜇 if 𝜇(𝑖) = 𝑖. Condition (ii) requires that no school exceeds its quota under 𝜇. The 
set of all matchings is denoted .8 For instance, 𝜇 = {(𝑖1, 𝑠2), (𝑖2, 𝑠1), (𝑖3, 𝑠1), (𝑖4, 𝑖4)} is the matching where student 𝑖1 is assigned to 
school 𝑠2, students 𝑖2 and 𝑖3 are assigned to school 𝑠1 and student 𝑖4 is unassigned.

Given a school choice problem ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩, a matching 𝜇 is stable if

(i) for all 𝑖 ∈ 𝐼 we have 𝜇(𝑖)𝑅𝑖𝑖 (individual rationality),

(ii) for all 𝑖 ∈ 𝐼 and all 𝑠 ∈ 𝑆 , if 𝑠𝑃𝑖𝜇(𝑖) then #{𝑗 ∈ 𝐼 ∣ 𝜇(𝑗) = 𝑠} = 𝑞𝑠 (non-wastefulness),

(iii) for all 𝑖, 𝑗 ∈ 𝐼 with 𝜇(𝑗) = 𝑠, if 𝜇(𝑗)𝑃𝑖𝜇(𝑖) then 𝑗 ∈ 𝐹+(𝑠, 𝑖) (no justified envy).

Let (𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ) be the set of stable matchings. A matching 𝜇′ Pareto dominates a matching 𝜇 if 𝜇′(𝑖)𝑅𝑖𝜇(𝑖) for all 𝑖 ∈ 𝐼 and 
𝜇′(𝑗)𝑃𝑗𝜇(𝑗) for some 𝑗 ∈ 𝐼 . A matching is Pareto efficient if it is not Pareto dominated by another matching. Let (𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ) be 
the set of Pareto efficient matchings.

A mechanism systematically selects a matching for any given school choice problem (𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ). A mechanism is individually 
rational (non-wasteful / stable / Pareto efficient) if it always selects an individually rational (non-wasteful / stable / Pareto efficient) 
matching. A mechanism is strategy-proof if no student can ever benefit by unilaterally misrepresenting her preferences.

3. The Top Trading Cycles algorithm

Abdulkadiroğlu and Sönmez (2003) introduce the Top Trading Cycles (TTC) mechanism for selecting a matching for each school 
problem. The TTC mechanism finds a matching by means of the following TTC algorithm.

Step 1. Set 𝑞1𝑠 = 𝑞𝑠 for all 𝑠 ∈ 𝑆 where 𝑞1𝑠 is equal to the initial capacity of school 𝑠 at Step 1. Each student 𝑖 ∈ 𝐼 points to the school 
that is ranked first in 𝑃𝑖. If there is no such school, then student 𝑖 points to herself and she forms a self-cycle. Each school 𝑠 ∈ 𝑆
points to the student that has the highest priority in 𝐹𝑠 . Since the number of students and schools are finite, there is at least one 
cycle. A cycle is an ordered list of distinct schools and distinct students (𝑠1, 𝑖1, 𝑠2, ..., 𝑠𝑙, 𝑖𝑙) where 𝑠1 points to 𝑖1 (denoted 𝑠1 ↦ 𝑖1), 
𝑖1 points to 𝑠2 (𝑖1 ↦ 𝑠2), … , 𝑠𝑙 points to 𝑖𝑙 (𝑠𝑙 ↦ 𝑖𝑙) and 𝑖𝑙 points to 𝑠1 (𝑖𝑙 ↦ 𝑠1). Each school (student) can be part of at most 
one cycle. Every student in a cycle is assigned a seat at the school she points to and she is removed. Similarly, every student in a 
self-cycle is not assigned to any school and is removed. If a school 𝑠 is part of a cycle, then its remaining capacity 𝑞2𝑠 = 𝑞

1
𝑠 −1. If a 

school 𝑠 is not part of any cycle, then its remaining capacity 𝑞2𝑠 = 𝑞
1
𝑠 . If 𝑞2𝑠 = 0, then school 𝑠 is removed. Let 𝐶1 = {𝑐11 , 𝑐

2
1 , ..., 𝑐

𝐿1
1 }

7 Haeringer and Klijn (2009) investigate constrained school choice problems where students can only rank a fixed number of schools.
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be the set of cycles in Step 1 (where 𝐿1 ≥ 1 is the number of cycles in Step 1). Let 𝐼1 be the set of students who are assigned to 
some school at Step 1. Let 𝑚𝑙1 be all the matches from cycle 𝑐𝑙1 that are formed in Step 1 of the algorithm:

𝑚𝑙1 =
{

{(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙1 and 𝑖↦ 𝑠} if 𝑐𝑙1 ≠ (𝑗)
{(𝑗, 𝑗)} if 𝑐𝑙1 = (𝑗) (1)

where (𝑗, 𝑗) simply means that student 𝑗 who is in a self-cycle ends up being definitely unassigned to any school. Let 𝑀1 =
⋃𝐿1
𝑙=1𝑚

𝑙
1

be all the matches between students and schools formed in Step 1 of the algorithm.

Step 𝑘 ≥ 2. Notice that 𝑞𝑘𝑠 keeps track of how many seats are still available at the school at Step 𝑘 of the algorithm. Each remaining 
student 𝑖 ∈ 𝐼 ⧵

⋃𝑘−1
𝑙=1 𝐼𝑙 points to the school 𝑠 that is ranked first in 𝑃𝑖 such that 𝑞𝑘𝑠 ≥ 1. If there is no such school, then student 𝑖

points to herself and she forms a self-cycle. Each school 𝑠 ∈ 𝑆 such that 𝑞𝑘𝑠 ≥ 1 points to the student 𝑗 ∈ 𝐼 ⧵
⋃𝑘−1
𝑙=1 𝐼𝑙 that has the 

highest priority in 𝐹𝑠. There is at least one cycle. Every student in a cycle is assigned a seat at the school she points to and she 
is removed. Similarly, every student in a self-cycle is not assigned to any school and is removed. If a school 𝑠 is part of a cycle, 
then its remaining capacity 𝑞𝑘+1𝑠 = 𝑞𝑘𝑠 −1. If a school 𝑠 is not part of any cycle, then its remaining capacity 𝑞𝑘+1𝑠 = 𝑞𝑘𝑠 . If 𝑞𝑘+1𝑠 = 0, 
then school 𝑠 is removed. Let 𝐶𝑘 = {𝑐1

𝑘
, 𝑐2
𝑘
, ..., 𝑐𝐿𝑘

𝑘
} be the set of cycles in Step 𝑘 (where 𝐿𝑘 ≥ 1 is the number of cycles in Step 

𝑘). Let 𝐼𝑘 be the set of students who are assigned to some school at Step 𝑘.

Let 𝑚𝑙
𝑘

be all the matches from cycle 𝑐𝑙
𝑘

that are formed in Step 𝑘 of the algorithm:

𝑚𝑙𝑘 =
{

{(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙
𝑘

and 𝑖↦ 𝑠} if 𝑐𝑙
𝑘
≠ (𝑗)

{(𝑗, 𝑗)} if 𝑐𝑙
𝑘
= (𝑗) (2)

Let 𝑀𝑘 =
⋃𝐿𝑘
𝑙=1𝑚

𝑙
𝑘

be all the matches between students and schools formed in Step 𝑘 of the algorithm.

End. The algorithm stops when all students have been removed. Let 𝑘̄ be the step at which the algorithm stops. Let 𝜇𝑇 denote the 
matching obtained from the Top Trading Cycles mechanism and it is given by 𝜇𝑇 =

⋃𝑘̄
𝑘=1𝑀𝑘.

Notice that, for any 𝑘′ ∈ {1, … , ̄𝑘 − 1}, given all the matches already settled, i.e. 
⋃𝑘′

𝑘=1𝑀𝑘, students involve in cycle 𝑐𝑙
𝑘′+1, 

𝑙 ∈ {1, … , 𝐿𝑘′+1}, of Step 𝑘′ + 1 of the TTC algorithm obtains their best possible assignment in 𝑚𝑙
𝑘′+1.

Abdulkadiroğlu and Sönmez (2003) show that the TTC mechanism is Pareto efficient and strategy-proof. TTC is also individually 
rational and non-wasteful, but it is not stable.

In addition to TTC, two alternative mechanisms are also central to the theory of school choice and commonly adopted all over 
the world: the Deferred Acceptance (DA) algorithm and the Immediate Acceptance (IA) algorithm, also known as the Boston mecha-

nism. Let 𝜇𝐷 denote the matching obtained from the DA mechanism and 𝜇𝐵 denote the matching obtained from the IA (or Boston) 
mechanism.

4. Farsighted stable sets for school choice

We adopt the notion of farsighted stable set for school choice problems to study the matchings that are stable when students 
farsightedly apply to schools while schools myopically and mechanically enroll students. The notion of a farsighted stable set for 
school choice problems is adapted from the notion of a myopic-farsighted stable set that has been introduced by Herings et al. (2020)

for two-sided matching problems and by Luo et al. (2021) for network formation games.9

A farsighted improving path for school choice problems is a sequence of matchings that can emerge when farsighted students 
form or destroy matches based on the improvement the end matching offers them relative to the current one while myopic schools 
form or destroy matches based on the improvement the next matching in the sequence offers them relative to the current one.

Let (𝜇(𝑠)) denote the power set of the set 𝜇(𝑠), i.e. the set of all subsets of 𝜇(𝑠).

Definition 1. Given a matching 𝜇, a coalition 𝑁 ⊆ 𝐼 ∪𝑆 is said to be able to enforce a matching 𝜇′ over 𝜇 if the following conditions 
hold:

(i) 𝜇′(𝑠) ∉ (𝜇(𝑠)) ∪ {𝑠} implies (𝜇′(𝑠) ⧵ 𝜇(𝑠)) ∪ {𝑠} ⊆𝑁 and

(ii) 𝜇′(𝑠) ∈ (𝜇(𝑠)) ∪ {𝑠}, 𝜇′(𝑠) ≠ 𝜇(𝑠), implies either 𝑠 or 𝜇(𝑠) ⧵𝜇′(𝑠) or 𝑠 together with a non-empty subset of 𝜇(𝑠) ⧵𝜇′(𝑠) should be 
in 𝑁 .

Condition (i) says that any new match in 𝜇′ that contains different partners than in 𝜇 should be such that 𝑠 and the different 
partners of 𝑠 belong to 𝑁 . Condition (ii) states that so as to leave some (or all) positions of one existing match in 𝜇 unfilled, either 𝑠
or the students leaving such positions or 𝑠 and some non-empty subset of such students should be in 𝑁 .

9 When all agents are myopic, the myopic-farsighted stable set boils down to the pairwise CP vNM set as defined in Herings et al. (2017) for two-sided matching 
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Definition 2. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. A farsighted improving path from a matching 𝜇 ∈  to a matching 
𝜇′ ∈ ⧵ {𝜇} is a finite sequence of distinct matchings 𝜇0, … , 𝜇𝐿 with 𝜇0 = 𝜇 and 𝜇𝐿 = 𝜇′ such that for every 𝑙 ∈ {0, … , 𝐿 −1} there 
is a coalition 𝑁𝑙 ⊆ 𝐼 ∪𝑆 that can enforce 𝜇𝑙+1 from 𝜇𝑙 and

(i) 𝜇𝐿(𝑖)𝑅𝑖𝜇𝑙(𝑖) for all 𝑖 ∈𝑁𝑙 ∩ 𝐼 and 𝜇𝐿(𝑗)𝑃𝑗𝜇𝑙(𝑗) for some 𝑗 ∈𝑁𝑙 ∩ 𝐼 ,

(ii) For every 𝑠 ∈𝑁𝑙 ∩ 𝑆 such that #𝜇𝑙(𝑠) + #(𝜇𝑙+1(𝑠) ⧵ 𝜇𝑙(𝑠)) > 𝑞𝑠, there is {𝑖1, … , 𝑖𝐽 } ⊆ (𝜇𝑙+1(𝑠) ⧵ 𝜇𝑙(𝑠)) and {𝑗1, … , 𝑗𝐽 } = (𝜇𝑙(𝑠) ⧵
𝜇𝑙+1(𝑠)) such that

𝐹𝑠(𝑖1) < 𝐹𝑠(𝑗1)

𝐹𝑠(𝑖2) < 𝐹𝑠(𝑗2)

⋮

𝐹𝑠(𝑖𝐽 ) < 𝐹𝑠(𝑗𝐽 ).

Notice that 𝜇𝑙(𝑠) are the students who are assigned to school 𝑠 in 𝜇𝑙 and (𝜇𝑙+1(𝑠) ⧵ 𝜇𝑙(𝑠)) are the students who join school 𝑠 in 
𝜇𝑙+1. Thus, a farsighted improving path for school choice problems consists of a sequence of matchings where along the sequence 
(i) students form or destroy matches based on the improvement the end matching offers them relative to the current one while (ii) 
schools always accept any student on their priority lists unless they have full capacity. In the case of full capacity, a school 𝑠 ∈𝑁𝑙 ∩𝑆
accepts to replace the match 𝜇𝑙 by 𝜇𝑙+1 if each student 𝑖 ∈ (𝜇𝑙(𝑠) ⧵ 𝜇𝑙+1(𝑠)) who leaves or is evicted from school 𝑠 from 𝜇𝑙 to 𝜇𝑙+1 is 
replaced by a newly enrolled student who has a higher priority.

Let some 𝜇 ∈ be given. If there exists a farsighted improving path from a matching 𝜇 to a matching 𝜇′, then we write 𝜇→ 𝜇′. The 
set of matchings 𝜇′ ∈ such that there is a farsighted improving path from 𝜇 to 𝜇′ is denoted by 𝜙(𝜇), so 𝜙(𝜇) = {𝜇′ ∈ ∣ 𝜇→ 𝜇′}.

Definition 3. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. A set of matchings 𝑉 ⊆ is a farsighted stable set if it satisfies:

(i) For every 𝜇, 𝜇′ ∈ 𝑉 , it holds that 𝜇′ ∉ 𝜙(𝜇).
(ii) For every 𝜇 ∈ ⧵ 𝑉 , it holds that 𝜙(𝜇) ∩ 𝑉 ≠ ∅.

Condition (i) of Definition 3 corresponds to internal stability (IS). For any two matchings 𝜇 and 𝜇′ in the farsighted stable set 𝑉
there is no farsighted improving path connecting 𝜇 to 𝜇′. Condition (ii) of Definition 3 expresses external stability (ES). There always 
exists a farsighted improving path from every matching 𝜇 outside the farsighted stable set 𝑉 to some matching in 𝑉 .10

Theorem 1. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem and 𝜇𝑇 be the matching obtained from the Top Trading Cycles mechanism. The 
singleton set {𝜇𝑇 } is a farsighted stable set.

Proof. Since {𝜇𝑇 } is a singleton set, internal stability (IS) is satisfied. (ES) Take any matching 𝜇 ≠ 𝜇𝑇 , we need to show that 
𝜙(𝜇) ∋ 𝜇𝑇 . We build in steps a farsighted improving path from 𝜇 to 𝜇𝑇 . Remember that 𝜇𝑇 =

⋃𝑘̄
𝑘=1𝑀𝑘 where 𝑀𝑘 =

⋃𝐿𝑘
𝑙=1𝑚

𝑙
𝑘

are all 
the matches between students and schools formed in Step 𝑘 of the TTC algorithm, and 𝑚𝑙

𝑘
is given by Expressions (1) and (2).

Step 1.1. If 𝑚1
1 ⊆ 𝜇 and 1 ≠𝐿1 then go to Step 1.2 with 𝜇′′′1,1 = 𝜇. If 𝑚1

1 ⊆ 𝜇 and 1 =𝐿1 then go to Step 1.End with 𝜇′′′1,𝐿1
= 𝜇. If 𝑚1

1 ⊈ 𝜇

then 𝜇′1,1 = 𝜇 − {(𝑖, 𝜇(𝑖)) ∣ (𝑖, 𝜇𝑇 (𝑖)) ∈ 𝑚1
1 and 𝜇(𝑖) ≠ 𝑖} + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐11 and 𝑠 ↦ 𝑖} − {(𝑗, 𝑠) ∈ 𝜇 ∣ 𝑠 ∈ 𝑐11 , 𝜇(𝑠) ∩ 𝑐11 = ∅, #𝜇(𝑠) =

𝑞𝑠 and 𝐹𝑠(𝑗) > 𝐹𝑠(𝑗′) for all 𝑗′ ∈ 𝜇(𝑠), 𝑗′ ≠ 𝑗}.11 That is, starting from 𝜇, looking forward towards 𝜇𝑇 , the coalition of students 
belonging to 𝑐11 has incentives to deviate to 𝜇′1,1 where each student in 𝑐11 is assigned to the school where she has the highest 
priority. Students belonging to 𝑐11 obtain in 𝜇𝑇 their best possible match. Schools have incentives to accept those students because 
either they do not have full capacity or the new student replaces the student who had the lowest priority among the students 
enrolled at the school. Next, students belonging to 𝑐11 leave their school to reach 𝜇′′1,1 = 𝜇

′
1,1 − {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐11 and 𝑠 ↦ 𝑖}. Next, 

each student belonging to 𝑐11 joins her most preferred school to reach 𝜇′′′1,1 = 𝜇
′′
1,1 + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐11 and 𝑖 ↦ 𝑠}. Schools accept 

those students since they have (at least) one vacant position. We reach 𝜇′′′1,1 with 𝑚1
1 ⊆ 𝜇

′′′
1,1 and so students belonging to 𝑐11 are 

assigned to the same school as in 𝜇𝑇 . If 1 ≠𝐿1, then go to Step 1.2. Otherwise, go to Step 1.End with 𝜇′′′1,𝐿1
= 𝜇′′′1,1.

Step 1.𝑙. (𝑙 > 1) If 𝑚𝑙1 ⊆ 𝜇
′′′
1,𝑙−1 and 𝑙 ≠ 𝐿1 then go to Step 1.𝑙+1 with 𝜇′′′1,𝑙 = 𝜇

′′′
1,𝑙−1. If 𝑚𝑙1 ⊆ 𝜇

′′′
1,𝑙−1 and 𝑙 = 𝐿1 then go to Step 1.End 

with 𝜇′′′1,𝐿1
= 𝜇′′′1,𝑙−1. If 𝑚𝑙1 ⊈ 𝜇

′′′
1,𝑙−1 then 𝜇′1,𝑙 = 𝜇

′′′
1,𝑙−1 − {(𝑖, 𝜇′′′1,𝑙−1(𝑖)) ∣ (𝑖, 𝜇

𝑇 (𝑖)) ∈ 𝑚𝑙1 and 𝜇′′′1,𝑙−1(𝑖) ≠ 𝑖} + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙1 and 𝑠 ↦

10 When all agents (schools and students) are farsighted, the notion of the farsighted stable set in Definition 3 coincides with the definition of the vNM farsighted 
stable set of Mauleon et al. (2011) who define and characterize the vNM farsighted stable set for two-sided matching problems. Doğan and Ehlers (2023) show the 
existence of myopic-farsighted stable sets for matching problems where there are farsighted agents only on one side of the market, while there may be myopic agents 
on both sides.
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𝑖} − {(𝑗, 𝑠) ∈ 𝜇′′′1,𝑙−1 ∣ 𝑠 ∈ 𝑐
𝑙
1, 𝜇

′′′
1,𝑙−1(𝑠) ∩ 𝑐

𝑙
1 = ∅, #𝜇′′′1,𝑙−1(𝑠) = 𝑞𝑠 and 𝐹𝑠(𝑗) > 𝐹𝑠(𝑗′) for all 𝑗′ ∈ 𝜇′′′1,𝑙−1(𝑠), 𝑗

′ ≠ 𝑗}. From 𝜇′′′1,𝑙−1, looking 
forward towards 𝜇𝑇 , the coalition of students belonging to 𝑐𝑙1 has incentives to deviate to 𝜇′1,𝑙 where each student in 𝑐𝑙1 is 
assigned to the school where she has the highest priority. Indeed, students belonging to 𝑐𝑙1 obtain in 𝜇𝑇 their best possible match. 
Schools have incentives to accept those students because either they do not have full capacity or the new student replaces the 
student who had the lowest priority among the students enrolled at the school. Next, students belonging to 𝑐𝑙1 leave their school 
to reach 𝜇′′1,𝑙 = 𝜇

′
1,𝑙 − {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙1 and 𝑠 ↦ 𝑖}. Next, each student belonging to 𝑐𝑙1 joins her most preferred school to reach 

𝜇′′′1,𝑙 = 𝜇
′′
1,𝑙 + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙1 and 𝑖 ↦ 𝑠}. Schools accept those students since they have (at least) one vacant position. We reach 

𝜇′′′1,𝑙 with 𝑚𝑙1 ⊆ 𝜇
′′′
1,𝑙 and so students belonging to 𝑐𝑙1 are assigned to the same school as in 𝜇𝑇 . If 𝑙 ≠ 𝐿1, then go to Step 1.𝑙+1. 

Otherwise, go to Step 1.End with 𝜇′′′1,𝐿1
= 𝜇′′′1,𝑙 .

Step 1.End. We have reached 𝜇′′′1,𝐿1
with 

⋃𝐿1
𝑙=1𝑚

𝑙
1 =𝑀1 ⊆ 𝜇

′′′
1,𝐿1

. If 𝜇′′′1,𝐿1
= 𝜇𝑇 then the process ends. Otherwise, go to Step 2.1.

Step 𝑘.1. (𝑘 ≥ 2) If 𝑚1
𝑘
⊆ 𝜇′′′

𝑘−1,𝐿𝑘−1
and 1 ≠ 𝐿𝑘 then go to Step 𝑘.2 with 𝜇′′′

𝑘,1 = 𝜇
′′′
𝑘−1,𝐿𝑘−1

. If 𝑚1
𝑘
⊆ 𝜇′′′

𝑘−1,𝐿𝑘−1
and 1 = 𝐿𝑘 then go to 

Step 𝑘.End with 𝜇′′′
𝑘,𝐿𝑘

= 𝜇′′′
𝑘−1,𝐿𝑘−1

. If 𝑚1
𝑘
⊈ 𝜇′′′

𝑘−1,𝐿𝑘−1
then 𝜇′

𝑘,1 = 𝜇
′′′
𝑘−1,𝐿𝑘−1

− {(𝑖, 𝜇′′′
𝑘−1,𝐿𝑘−1

(𝑖)) ∣ (𝑖, 𝜇𝑇 (𝑖)) ∈ 𝑚1
𝑘

and 𝜇′′′
𝑘−1,𝐿𝑘−1

(𝑖) ≠
𝑖} +{(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐1

𝑘
and 𝑠 ↦ 𝑖} −{(𝑗, 𝑠) ∈ 𝜇′′′

𝑘−1,𝐿𝑘−1
∣ 𝑠 ∈ 𝑐1

𝑘
, 𝜇′′′

𝑘−1,𝐿𝑘−1
(𝑠) ∩ 𝑐1

𝑘
= ∅, #𝜇′′′

𝑘−1,𝐿𝑘−1
(𝑠) = 𝑞𝑠 and 𝐹𝑠(𝑗) > 𝐹𝑠(𝑗′) for all 𝑗′ ∈

𝜇′′′
𝑘−1,𝐿𝑘−1

(𝑠), 𝑗′ ≠ 𝑗}. Starting from 𝜇′′′
𝑘−1,𝐿𝑘−1

, looking forward towards 𝜇𝑇 , the coalition of students belonging to 𝑐1
𝑘

has now 
incentives to deviate to 𝜇′

𝑘,1 where each student in 𝑐1
𝑘

is assigned to the school where she has the highest priority among students 
belonging to 𝐼 ⧵ (

⋃𝑘−1
𝑘′=1 𝐼𝑘′ ). Remember that 

⋃𝑘−1
𝑘′=1 𝐼𝑘′ is the set of students who are involved in 

⋃𝑘−1
𝑘′=1𝑀𝑘′ . Given that the 

matches 
⋃𝑘−1
𝑘′=1𝑀𝑘′ ⊆ 𝜇

′′′
𝑘−1,𝐿𝑘−1

are already settled and remain fixed, students belonging to 𝑐1
𝑘

obtain in 𝜇𝑇 their best possible 
match. Schools have incentives to accept those students because either they do not have full capacity or the new student replaces 
the student who had the lowest priority among the students enrolled at the school. Next, students belonging to 𝑐1

𝑘
leave their 

school to reach 𝜇′′
𝑘,1 = 𝜇

′
𝑘,1 − {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐1

𝑘
and 𝑠 ↦ 𝑖}. Next, each student belonging to 𝑐1

𝑘
joins her most preferred school 

(constrained to 
⋃𝑘−1
𝑘′=1𝑀𝑘′ being fixed) to reach 𝜇′′′

𝑘,1 = 𝜇
′′
𝑘,1 + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐1

𝑘
and 𝑖 ↦ 𝑠}. Schools accept those students since they 

have (at least) one vacant position. We reach 𝜇′′′
𝑘,1 with 𝑚1

𝑘
⊆ 𝜇′′′

𝑘,1 and so students belonging to 𝑐1
𝑘

are assigned to the same school 
as in 𝜇𝑇 . If 1 ≠𝐿𝑘, then go to Step 𝑘.2. Otherwise, go to Step 𝑘.End with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇′′′

𝑘,1.

Step 𝑘.𝑙. (𝑙 ≥ 2) If 𝑚𝑙
𝑘
⊆ 𝜇′′′

𝑘,𝑙−1 and 𝑙 ≠ 𝐿𝑘 then go to Step 𝑘.𝑙+1 with 𝜇′′′
𝑘,𝑙

= 𝜇′′′
𝑘,𝑙−1. If 𝑚𝑙

𝑘
⊆ 𝜇′′′

𝑘,𝑙−1 and 𝑙 = 𝐿𝑘 then go to Step 𝑘.End 
with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇′′′

𝑘,𝑙−1. If 𝑚𝑙
𝑘
⊈ 𝜇′′′

𝑘,𝑙−1 then 𝜇′
𝑘,𝑙

= 𝜇′′′
𝑘,𝑙−1 − {(𝑖, 𝜇′′′

𝑘,𝑙−1(𝑖)) ∣ (𝑖, 𝜇
𝑇 (𝑖)) ∈ 𝑚𝑙

𝑘
and 𝜇′′′

𝑘,𝑙−1(𝑖) ≠ 𝑖} + {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙
𝑘

and 𝑠 ↦
𝑖} − {(𝑗, 𝑠) ∈ 𝜇′′′

𝑘,𝑙−1 ∣ 𝑠 ∈ 𝑐
𝑙
𝑘
, 𝜇′′′

𝑘,𝑙−1(𝑠) ∩ 𝑐
𝑙
𝑘
= ∅, #𝜇′′′

𝑘,𝑙−1(𝑠) = 𝑞𝑠 and 𝐹𝑠(𝑗) > 𝐹𝑠(𝑗′) for all 𝑗′ ∈ 𝜇′′′
𝑘,𝑙−1(𝑠), 𝑗

′ ≠ 𝑗}. Starting from 𝜇′′′
𝑘,𝑙−1, 

looking forward towards 𝜇𝑇 , the coalition of students belonging to 𝑐𝑙
𝑘

has now incentives to deviate to 𝜇′
𝑘,𝑙

where each student 
in 𝑐𝑙

𝑘
is assigned to the school where she has the highest priority among students belonging to 𝐼 ⧵ (

⋃𝑘−1
𝑘′=1 𝐼𝑘′ ). Given that the 

matches 
⋃𝑘−1
𝑘′=1𝑀𝑘′ ⊆ 𝜇

′′′
𝑘−1,𝐿𝑘−1

are already settled and remain fixed, students belonging to 𝑐𝑙
𝑘

obtain in 𝜇𝑇 their best possible 
match. Schools have incentives to accept those students because either they do not have full capacity or the new student replaces 
the student who had the lowest priority among the students enrolled at the school. Next, students belonging to 𝑐𝑙

𝑘
leave their 

school to reach 𝜇′′
𝑘,𝑙

= 𝜇′
𝑘,𝑙

− {(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙
𝑘

and 𝑠 ↦ 𝑖}. Next, each student belonging to 𝑐𝑙
𝑘

joins her most preferred school 
(constrained to 

⋃𝑘−1
𝑘′=1𝑀𝑘′ being fixed) to reach 𝜇′′′

𝑘,𝑙
= 𝜇′′

𝑘,𝑙
+{(𝑖, 𝑠) ∣ 𝑖, 𝑠 ∈ 𝑐𝑙

𝑘
and 𝑖 ↦ 𝑠}. Schools accept those students since they 

have (at least) one vacant position. We reach 𝜇′′′
𝑘,𝑙

with 𝑚𝑙
𝑘
⊆ 𝜇′′′

𝑘,𝑙
and so students belonging to 𝑐𝑙

𝑘
are assigned to the same school 

as in 𝜇𝑇 . If 𝑙 ≠𝐿𝑘, then go to Step 𝑘.𝑙+1. Otherwise, go to Step 𝑘.End with 𝜇′′′
𝑘,𝐿𝑘

= 𝜇′′′
𝑘,𝑙

.

Step 𝑘.End. We have reached 𝜇′′′
𝑘,𝐿𝑘

with 
⋃𝑘
𝑘′=1𝑀𝑘′ ⊆ 𝜇

′′′
𝑘,𝐿𝑘

. If 𝜇′′′
𝑘,𝐿𝑘

= 𝜇𝑇 then the process ends. Otherwise, go to Step 𝑘+1.

End. The process goes on until Step 𝑘̄ where we reach 𝜇′′′
𝑘̄,𝐿𝑘̄

=
⋃𝑘̄
𝑘=1𝑀𝑘 = 𝜇𝑇 . □

The matching obtained from the TTC algorithm is always Pareto efficient but may not be stable when students are myopic. 
Theorem 1 shows that, once students are farsighted, the matching obtained from the TTC algorithm becomes stable.12 By means of 
Example 1 we provide the basic intuition behind Theorem 1 and its proof.

Example 1 (Haeringer, 2017). Consider a school choice problem ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ with 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4} and 𝑆 = {𝑠1, 𝑠2, 𝑠3}. Students’ 
preferences and schools’ priorities and capacities are as follows.

12 This result is robust to the incorporation of various forms of maximality in the definition of farsighted improving path, like the strong rational expectations 
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farsighted stable set in Dutta and Vohra (2017) and absolute maximality as in Ray and Vohra (2019). See also Herings et al. (2020).
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Students

𝑃𝑖1 𝑃𝑖2 𝑃𝑖3 𝑃𝑖4

𝑠1 𝑠1 𝑠2 𝑠1
𝑠2 𝑠2 𝑠1 𝑠3
𝑠3 𝑠3 𝑠3 𝑠2

Schools

𝐹𝑠1 𝐹𝑠2 𝐹𝑠3

𝑞𝑠 2 1 1

𝑖1 𝑖1 𝑖2
𝑖3 𝑖2 𝑖3
𝑖4 𝑖4 𝑖4
𝑖2 𝑖3 𝑖1

In Example 1, 𝜇𝑇 = {(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2), (𝑖4, 𝑠3)} is the matching obtained from the TTC algorithm. In the first round of the 
TTC algorithm, there is one cycle where student 𝑖1 points to school 𝑠1 and school 𝑠1 points to student 𝑖1. That is, 𝐶1 = {𝑐11} with 
𝑐11 = (𝑠1, 𝑖1). Student 𝑖1 is matched to school 𝑠1: 𝑚1

1 = {(𝑖1, 𝑠1)} and school 𝑠1 has only one leftover seat. In the second round of the 
TTC algorithm, there is one cycle where student 𝑖2 points to school 𝑠1, school 𝑠1 points to student 𝑖3, student 𝑖3 points to school 𝑠2
and school 𝑠2 points to student 𝑖2. That is, 𝐶2 = {𝑐12} with 𝑐12 = (𝑠1, 𝑖3, 𝑠2, 𝑖2). Student 𝑖2 is matched to school 𝑠1 and student 𝑖3 is 
matched to school 𝑠2: 𝑚1

2 = {(𝑖2, 𝑠1), (𝑖3, 𝑠2)}, and so 𝑖2 and 𝑖3 exchange their priority. In the third round of the TTC algorithm, there is 
only one leftover student, 𝑖4, who points to school 𝑠3 and school 𝑠3 points to student 𝑖4. That is, 𝐶3 = {𝑐13} with 𝑐13 = (𝑠3, 𝑖4). Student 
𝑖4 is matched to school 𝑠3: 𝑚1

3 = {(𝑖4, 𝑠3)}, and so 𝜇𝑇 =𝑚1
1 ∪𝑚

1
2 ∪𝑚

1
3.

From Theorem 1 we know that {𝜇𝑇 } is a farsighted stable set. Indeed, from any 𝜇 ≠ 𝜇𝑇 there exists a farsighted improving 
path leading to 𝜇𝑇 . We now provide the basic mechanism behind the construction of a farsighted improving path leading to 𝜇𝑇 . 
Take for instance the matching 𝜇0 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠3), (𝑖4, 𝑠1)}. We now construct a farsighted improving from 𝜇0 to 𝜇𝑇 =
{(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2), (𝑖4, 𝑠3)} = 𝜇4 following the steps as in the proof of Theorem 1. First, we consider students and schools belonging 
to the cycles in 𝐶1. Since 𝑚1

1 = {(𝑖1, 𝑠1)} ⊆ 𝜇0, student 𝑖1 stays matched to school 𝑠1 along the farsighted improving path, i.e. 𝑚1
1 =

{(𝑖1, 𝑠1)} ⊆ 𝜇𝑙 , 0 ≤ 𝑙 ≤ 4. Next, we consider students and schools belonging to the cycles in 𝐶2 . Notice that 𝑚1
2 = {(𝑖2, 𝑠1), (𝑖3, 𝑠2)} ∩𝜇0 =

∅. Looking forward towards 𝜇𝑇 , the coalition 𝑁0 = {𝑖2, 𝑖3, 𝑠1, 𝑠2} deviates so that student 𝑖3 joins school 𝑠1 and student 𝑖2 joins schools 
𝑠2 to reach the matching 𝜇1 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠1), (𝑖4, 𝑖4)} where students 𝑖2 and 𝑖3 are matched to the schools where they have 
priority. By doing so, they push student 𝑖4 out of school 𝑠1. Next, the coalition 𝑁1 = {𝑖2, 𝑖3} deviates so that students 𝑖2 and 𝑖3 leave, 
respectively, schools 𝑠2 and 𝑠1 to reach the matching 𝜇2 = {(𝑖1, 𝑠1), (𝑖2, 𝑖2), (𝑖3, 𝑖3), (𝑖4, 𝑖4)} where both students are not assigned to 
any school. They are temporarily worse off, but they anticipate to end up in 𝜇𝑇 . Next, the coalition 𝑁2 = {𝑖2, 𝑖3, 𝑠1, 𝑠2} deviates 
so that student 𝑖2 joins school 𝑠1 and student 𝑖3 joins schools 𝑠2 to reach the matching 𝜇3 = {(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2), (𝑖4, 𝑖4)} with 
𝑚1
2 = {(𝑖2, 𝑠1), (𝑖3, 𝑠2)} ⊆ 𝜇3. Both schools accept to enroll those students because they are not at full capacity. Finally, we consider 

students and schools belonging to the cycles in 𝐶3 . Since 𝑚1
3 = {(𝑖4, 𝑠3)} ∩ 𝜇3 = ∅, the coalition 𝑁3 = {𝑖4, 𝑠3} deviates so that student 

𝑖4 joins school 𝑠3 to form the match (𝑖4, 𝑠3) and to reach the matching 𝜇4 = 𝜇𝑇 . Thus, 𝜇𝑇 ∈ 𝜙(𝜇0).
In Example 1, 𝜇𝐷 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠1), (𝑖4, 𝑠3)} is the matching obtained from the Deferred Acceptance (DA) algorithm, 𝜇𝐵 =

{(𝑖1, 𝑠1), (𝑖2, 𝑠3), (𝑖3, 𝑠2), (𝑖4, 𝑠1)} is the matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the Boston mechanism). 
Thus, 𝜇𝑇 ≠ 𝜇𝐷 ≠ 𝜇𝐵 . We next show that in Example 1, once students are farsighted, the matching obtained from the DA algorithm 
and the matching obtained from the IA algorithm are unstable.

Since students are at least as well off and some of them (𝑖2 and 𝑖3) are strictly better off in 𝜇𝑇 than in 𝜇𝐷 , we have that there is no 
farsighted improving path from 𝜇𝑇 to 𝜇𝐷 . That is, 𝜇𝐷 ∉ 𝜙(𝜇𝑇 ). Hence, {𝜇𝐷} is not a farsighted stable set since (ES) is violated. Let

𝜇1 = {(𝑖1, 𝑠1), (𝑖2, 𝑖2), (𝑖3, 𝑠2), (𝑖4, 𝑠1)},

𝜇2 = {(𝑖1, 𝑠1), (𝑖2, 𝑠3), (𝑖3, 𝑠2), (𝑖4, 𝑠1)} = 𝜇𝐵,

𝜇3 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑖3), (𝑖4, 𝑠1)},

𝜇4 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠3), (𝑖4, 𝑠1)},

𝜇5 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠1), (𝑖4, 𝑖4)}.

Computing the farsighted improving paths emanating from 𝜇𝑇 , we get 𝜙(𝜇𝑇 ) = {𝜇1, 𝜇2, 𝜇3, 𝜇4}. Notice that 𝜇5 ∉ 𝜙(𝜇𝑇 ) since 
student 𝑖4 is worse off in 𝜇5 than in 𝜇𝑇 . From 𝜇1, 𝜇2, 𝜇3, 𝜇4 and 𝜇5, there is a farsighted improving to 𝜇𝐷 . That is, 𝜇𝐷 ∈ 𝜙(𝜇) for 
𝜇 ∈ {𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5}. From 𝜇𝐷 there is only a farsighted improving path to 𝜇𝑇 ; i.e. 𝜙(𝜇𝐷) = {𝜇𝑇 }. For a set 𝑉 ⊇ {𝜇𝐷} to be a 
farsighted stable set, we need that (i) 𝜇𝑇 ∉ 𝑉 (otherwise (IS) is violated), (ii) a single 𝜇 ∈ {𝜇1, 𝜇2, 𝜇3, 𝜇4} should belong to 𝑉 to 
satisfy (ES) since 𝜇𝐷 ∉ 𝜙(𝜇𝑇 ). But, 𝑉 would then violate (IS) since 𝜇𝐷 ∈ 𝜙(𝜇) for 𝜇 ∈ {𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5}. Thus, there is no 𝑉 such 
that 𝜇𝐷 ∈ 𝑉 that is a farsighted stable set in Example 1.

Since 𝜙(𝜇𝐷) = {𝜇𝑇 }, there is no farsighted improving path from 𝜇𝐷 to 𝜇𝐵 . Thus, 𝑉 = {𝜇𝐵} does not satisfy (ES), and hence 
𝑉 = {𝜇𝐵} is not a farsighted stable set. Moreover, a set 𝑉 ⊇ {𝜇𝐵, 𝜇𝐷} cannot be a farsighted stable since 𝜇𝐷 ∈ 𝜙(𝜇𝐵). Otherwise, 𝑉
would violate (IS) since there is a farsighted stable improving path from 𝜇𝐵 to 𝜇𝐷 .

Is 𝑉 = {𝜇𝑇 } the unique farsighted stable set in Example 1? Any other set 𝑉 ′ such that 𝜇𝑇 ∈ 𝑉 ′ violates (IS), and hence 𝜇𝑇 ∉ 𝑉 ′. 
Then, 𝜇𝐷 ∈ 𝑉 ′ because, otherwise, 𝑉 ′ violates (ES) since 𝜙(𝜇𝐷) = {𝜇𝑇 }. However, as shown before, there is no 𝑉 ′ such that 𝜇𝐷 ∈ 𝑉 ′
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that is a farsighted stable set. Thus, we have that 𝑉 = {𝜇𝑇 } is the unique farsighted stable set.
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Remark 1. There are school choice problems such that the matching obtained from the Deferred Acceptance (DA) algorithm does 
not belong to any farsightedly stable set.

Since the matching obtained from the IA algorithm is Pareto efficient, Example 1 also shows that there are school choice problems 
where some Pareto efficient matching does not belong to any farsighted stable set. Thus, Pareto efficiency is not a sufficient condition 
for guaranteeing the stability of a matching when students are farsighted.

Remark 2. There are school choice problems such that some Pareto efficient matching does not belong to any farsighted stable set.

Corollary 1. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem and 𝜇𝑇 be the matching obtained from the Top Trading Cycles mechanism after 
𝑘̄ steps. From any 𝜇 ≠ 𝜇𝑇 there is a farsighted improving path to 𝜇𝑇 with 𝜇0 = 𝜇 and 𝜇𝐿 = 𝜇𝑇 such that for every 𝑙 ∈ {0, … , 𝐿 − 1} there is 
a coalition 𝑁𝑙 ⊆

⋃𝑘̄
𝑘=1𝐶𝑘 that enforces 𝜇𝑙+1 from 𝜇𝑙 .

Corollary 1 follows from the proof of Theorem 1. Notice that 
⋃𝑘̄
𝑘=1𝐶𝑘 is simply a collection of cycles from the TTC algorithm. 

Definition 2 of a farsighted improving path is quite permissive in terms of the size of the coalition 𝑁𝑙 that enforces 𝜇𝑙+1 from 𝜇𝑙 . 
However, Corollary 1 tells us that there exists a farsighted improving path from 𝜇 ≠ 𝜇𝑇 to 𝜇𝑇 with 𝜇0 = 𝜇 and 𝜇𝐿 = 𝜇𝑇 such that 
for every 𝑙 ∈ {0, … , 𝐿 − 1} the coalition 𝑁𝑙 that enforces 𝜇𝑙+1 from 𝜇𝑙 consists of students (and possibly schools) who are part of the 
same cycle in the TTC algorithm. Thus, for getting Theorem 1, it is sufficient to allow a deviating coalition (involving more than one 
student) to be composed exclusively of students (and possibly their schools) who are exchanging their priorities among themselves in 
the TTC algorithm. Such restriction seems not too demanding since students who coordinate their moves are the ones who exchange 
their priorities.

5. Limited farsightedness

How much farsightedness from the students do we need to stabilize the matching obtained from the TTC algorithm? To answer 
this question we propose the notion of horizon-𝑘 farsighted stable set for school choice problems to study the matchings that are 
stable when students are limited in their degree of farsightedness. A horizon-𝑘 farsighted improving path for school choice problems 
is a sequence of matchings that can emerge when limited farsighted students form or destroy matches based on the improvement 
the 𝑘-steps ahead matching offers them relative to the current one while myopic schools form or destroy matches based on the 
improvement the next matching in the sequence offers them relative to the current one. A set of matchings is a horizon-𝑘 farsighted 
stable set if (IS) for any two matchings belonging to the set, there is no horizon-𝑘 farsighted improving path connecting from one 
matching to the other one, and (ES) there always exists a horizon-𝑘 farsighted improving path from every matching outside the set 
to some matching within the set.

Definition 4. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. A horizon-𝑘 farsighted improving path from a matching 𝜇 ∈  to 
a matching 𝜇′ ∈  ⧵ {𝜇} is a finite sequence of distinct matchings 𝜇0, … , 𝜇𝐿 with 𝜇0 = 𝜇 and 𝜇𝐿 = 𝜇′ such that for every 𝑙 ∈
{0, … , 𝐿 − 1} there is a coalition 𝑁𝑙 ⊆ 𝐼 ∪𝑆 that can enforce 𝜇𝑙+1 from 𝜇𝑙 and

(i) 𝜇min{𝑙+𝑘,𝐿}(𝑖)𝑅𝑖𝜇𝑙(𝑖) for all 𝑖 ∈𝑁𝑙 ∩ 𝐼 and 𝜇min{𝑙+𝑘,𝐿}(𝑗)𝑃𝑗𝜇𝑙(𝑗) for some 𝑗 ∈𝑁𝑙 ∩ 𝐼 ,

(ii) For every 𝑠 ∈𝑁𝑙 ∩ 𝑆 such that #𝜇𝑙(𝑠) + #(𝜇𝑙+1(𝑠) ⧵ 𝜇𝑙(𝑠)) > 𝑞𝑠, there is {𝑖1, … , 𝑖𝐽 } ⊆ (𝜇𝑙+1(𝑠) ⧵ 𝜇𝑙(𝑠)) and {𝑗1, … , 𝑗𝐽 } = (𝜇𝑙(𝑠) ⧵
𝜇𝑙+1(𝑠)) such that

𝐹𝑠(𝑖1) < 𝐹𝑠(𝑗1)

𝐹𝑠(𝑖2) < 𝐹𝑠(𝑗2)

⋮

𝐹𝑠(𝑖𝐽 ) < 𝐹𝑠(𝑗𝐽 ).

Definition 4 tells us that a horizon-𝑘 farsighted improving path for school choice problems consists of a sequence of matchings 
where along the sequence students form or destroy matches based on the improvement the 𝑘-steps ahead matching offers them 
relative to the current one. Precisely, along a horizon-𝑘 farsighted improving path, each time some student 𝑖 is on the move she is 
comparing her current match (i.e. 𝜇𝑙(𝑖)) with the match she will get 𝑘-steps ahead on the sequence (i.e. 𝜇𝑙+𝑘(𝑖)) except if the end 
matching of the sequence lies within her horizon (i.e. 𝐿 < 𝑙 + 𝑘). In such a case, she simply compares her current match (i.e. 𝜇𝑙(𝑖)) 
with the end match (i.e. 𝜇𝐿). Schools continue to accept any student on their priority lists unless they have full capacity. In the case 
of full capacity, a school 𝑠 ∈ 𝑁𝑙 ∩ 𝑆 accepts to replace the match 𝜇𝑙 by 𝜇𝑙+1 if each student 𝑖 ∈ (𝜇𝑙(𝑠) ⧵ 𝜇𝑙+1(𝑠)) who leaves or is 
evicted from school 𝑠 from 𝜇𝑙 to 𝜇𝑙+1 is replaced by a newly enrolled student who has a higher priority.

Let some 𝜇 ∈ be given. If there exists a horizon-𝑘 farsighted improving path from a matching 𝜇 to a matching 𝜇′, then we write 
𝜇→𝑘 𝜇

′. The set of matchings 𝜇′ ∈ such that there is a horizon-𝑘 farsighted improving path from 𝜇 to 𝜇′ is denoted by 𝜙𝑘(𝜇), so 
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𝜙𝑘(𝜇) = {𝜇′ ∈ ∣ 𝜇→𝑘 𝜇
′}.
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Definition 5. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. A set of matchings 𝑉 ⊆ is a horizon-𝑘 farsighted stable set if it satisfies:

(i) For every 𝜇, 𝜇′ ∈ 𝑉 , it holds that 𝜇′ ∉ 𝜙𝑘(𝜇).
(ii) For every 𝜇 ∈ ⧵ 𝑉 , it holds that 𝜙𝑘(𝜇) ∩ 𝑉 ≠ ∅.

From the construction of a farsighted improving path in the proof of Theorem 1 we have that students belonging to a cycle only 
need to look forward three steps ahead to have incentives for engaging a move towards the matches they have in the matching 
obtained from the TTC algorithm, 𝜇𝑇 . Once they reach those matches they do not move afterwards. The three steps consist of (i) 
getting first a seat at the school they have priority, (ii) leaving that school and by doing so, guaranteeing a free seat at that school, 
(iii) joining the school they match to in 𝜇𝑇 . Hence, for 𝑘 ≥ 3, there exists a horizon-𝑘 farsighted improving from any 𝜇 ≠ 𝜇𝑇 to 𝜇𝑇 , 
and so {𝜇𝑇 } is a horizon-𝑘 farsighted stable set.13

Corollary 2. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem and 𝜇𝑇 be the matching obtained from the Top Trading Cycles mechanism. The 
singleton set {𝜇𝑇 } is a horizon-𝑘 farsighted stable set for 𝑘 ≥ 3.

6. Variations of the TTC algorithm

6.1. Equitable Top Trading Cycles algorithm

Hakimov and Kesten (2018) introduce the Equitable Top Trading Cycles mechanism for selecting a matching for each school 
problem by means of the Equitable Top Trading Cycles algorithm (ETTC). They show that the ETTC mechanism is Pareto-efficient 
and group strategy-proof and eliminates more avoidable justified envy situations than the TTC. Instead of allowing only the current 
highest priority students to participate in the trading process, the ETTC assigns all slots of each school 𝑠 to all the 𝑞𝑠 students with 
the highest priorities in each school, giving one slot to each student and endowing them with equal trading power. The terms of trade 
are next determined by a pointing rule specifying for each student-school pair which student-school pair should be pointed to among 
those who contain the remaining favorite school.

In the ETTC, each student-school pair (𝑖, 𝑠) points to the student-school pair (𝑖′, 𝑠′) containing the highest priority student for 𝑠, the 
school contained in the former pair. By doing so, the ETTC mechanism ensures that the students involved in a cycle of student-school 
pairs have the highest priority for their favorite schools among their competitors at that step of the trading market.

Example 2. Consider a school choice problem ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ with eight students, 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7, 𝑖8} and four schools, 𝑆 =
{𝑠1, 𝑠2, 𝑠3, 𝑠4}. Students’ preferences and schools’ priorities and capacities are as follows.

Students

𝑃𝑖1 𝑃𝑖2 𝑃𝑖3 𝑃𝑖4 𝑃𝑖5 𝑃𝑖6 𝑃𝑖7 𝑃𝑖8

𝑠2 𝑠3 𝑠1 𝑠1 𝑠4 𝑠2 𝑠4 𝑠1
𝑠1 𝑠1 𝑠3 𝑠3 𝑠2 𝑠4 𝑠2 𝑠3
𝑠3 𝑠2 𝑠4 𝑠2 𝑠3 𝑠3 𝑠1 𝑠2
𝑠4 𝑠4 𝑠2 𝑠4 𝑠1 𝑠1 𝑠3 𝑠4

Schools

𝐹𝑠1 𝐹𝑠2 𝐹𝑠3 𝐹𝑠4

𝑞𝑠 1 3 3 1

𝑖1 𝑖4 𝑖1 𝑖2
𝑖2 𝑖2 𝑖5 𝑖6
𝑖5 𝑖3 𝑖3 𝑖5
𝑖7 𝑖8 𝑖7 𝑖3
𝑖6 𝑖7 𝑖4 𝑖7
𝑖3 𝑖1 𝑖2 𝑖8
𝑖8 𝑖5 𝑖6 𝑖4
𝑖4 𝑖6 𝑖8 𝑖1

Let 𝜇𝐸 be the matching obtained from the ETTC mechanism. We illustrate the mechanism behind the ETTC algorithm by means 
of Example 2 which is adapted from Hakimov and Kesten (2018). A formal description of the ETTC algorithm can be found in 
Appendix A.1.

In the inheritance round of the first step of the ETTC algorithm, all seats are available to inherit and so, students are assigned 
to seats according to the priority orders 𝐹 to form the following student-school pairs: (𝑖1, 𝑠1), (𝑖4, 𝑠2), (𝑖2, 𝑠2), (𝑖3, 𝑠2), (𝑖1, 𝑠3), (𝑖5, 𝑠3), 
(𝑖3, 𝑠3) and (𝑖2, 𝑠4). Next, each student-school pair (𝑖, 𝑠) points to the student-pair (𝑖′, 𝑠′) such that 𝑠′ is the top choice of student 𝑖 and 
𝑖′ has the highest priority for school 𝑠 among the students who are assigned a seat at school 𝑠′ in the inheritance round. That is, (𝑖1, 𝑠1)
points to (𝑖2, 𝑠2), (𝑖2, 𝑠2) points to (𝑖3, 𝑠3), (𝑖3, 𝑠3) points to (𝑖1, 𝑠1). In addition, (𝑖5, 𝑠3) points to (𝑖2, 𝑠4) and (𝑖2, 𝑠4) points to (𝑖5, 𝑠3). 

13 In Example 1, it is sufficient for the students who belong to 𝑐1 to look forward towards 𝜇3 when they participate to the moves from 𝜇0 to 𝜇4 . Indeed, they are not 
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affected by the move from 𝜇3 to 𝜇4 since they remain with the same matches.
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Finally, (𝑖4, 𝑠2) points to (𝑖1, 𝑠1). Hence, there are two cycles: (𝑖1, 𝑠1) ↦ (𝑖2, 𝑠2) ↦ (𝑖3, 𝑠3) ↦ (𝑖1, 𝑠1) and (𝑖5, 𝑠3) ↦ (𝑖2, 𝑠4) ↦ (𝑖5, 𝑠3) with 
student 𝑖2 participating to both cycles.14 It leads to the following matches: (𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠1) and (𝑖5, 𝑠4).

There is one seat at school 𝑠2 and one seat at school 𝑠3 to be inherited from the first step. Since there is student 𝑖4 who was 
assigned a seat at school 𝑠2 in the inheritance round of the first step and 𝑖4 was not matched to some school in step one, there is no 
inheritance of the 𝑠2 seat at this step. Since all students who are assigned a seat at school 𝑠3 in the inheritance round of the first step 
are matched to some school in step one, the remaining seats of school 𝑠3 are inherited by students 𝑖7 and 𝑖4. Thus, the student-school 
pairs in the inheritance round of the second step are (𝑖4 , 𝑠2), (𝑖7, 𝑠3) and (𝑖4, 𝑠3). Since student 𝑖4 is already assigned one seat from her 
best choice school (i.e. 𝑠3), then all student-school pairs containing her point to that student-school pair (i.e. (𝑖4 , 𝑠2) ↦ (𝑖4, 𝑠3)) and 
the student-school pair (𝑖4, 𝑠3) points to (𝑖4, 𝑠3) and the match (𝑖4, 𝑠3) is formed.

Since there is student 𝑖7 who was assigned a seat at school 𝑠3 in the inheritance round of the second step and 𝑖7 was not matched 
to some school in step two, there is no inheritance of the 𝑠3 seat at this step. Since the student who is assigned a seat at school 𝑠2
in the inheritance round of the second step is matched to some school in step two, the remaining seats of school 𝑠2 are inherited 
by students 𝑖8 and 𝑖7. Thus, the student-school pairs in the inheritance round of the third step are (𝑖7, 𝑠3), (𝑖8, 𝑠2) and (𝑖7, 𝑠2). Since 
student 𝑖7 is already assigned one seat from her best choice school (i.e. 𝑠2), then all student-school pairs containing her point to that 
student-school pair (i.e. (𝑖7, 𝑠3) ↦ (𝑖7, 𝑠2)) and the student-school pair (𝑖7, 𝑠2) points to (𝑖7, 𝑠2) and the match (𝑖7, 𝑠2) is formed.

Since there is student 𝑖8 who was assigned a seat at school 𝑠2 in the inheritance round of the third step and 𝑖8 was not matched to 
some school in step three, there is no inheritance of the 𝑠2 seat. Since the only student who is assigned a seat at school 𝑠3 in the inheri-

tance round of the third step is matched to some school in step three, the remaining seat of school 𝑠3 is inherited by student 𝑖6. Thus, the 
student-school pairs in the inheritance round of the fourth step are (𝑖8, 𝑠2) and (𝑖6, 𝑠3). Then, (𝑖8, 𝑠2) points to (𝑖6, 𝑠3) and (𝑖6, 𝑠3) points 
to (𝑖8, 𝑠2). So, there is one cycle (𝑖8, 𝑠2) ↦ (𝑖6, 𝑠3) ↦ (𝑖8, 𝑠2) leading to the following matches: (𝑖8, 𝑠3) and (𝑖6, 𝑠2). We reach the match-

ing obtained from the ETTC algorithm, 𝜇𝐸 = {(𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠1), (𝑖4, 𝑠3), (𝑖5, 𝑠4), (𝑖6, 𝑠2), (𝑖7, 𝑠2), (𝑖8, 𝑠3)}. Notice that the matching 
obtained from the ETTC algorithm differs from the TTC matching, 𝜇𝑇 = {(𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠3), (𝑖4, 𝑠1), (𝑖5, 𝑠4), (𝑖6, 𝑠2), (𝑖7, 𝑠2), (𝑖8, 𝑠3)}.

Theorem 2. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem and 𝜇𝐸 be the matching obtained from the Equitable Top Trading Cycles mecha-

nism. The singleton set {𝜇𝐸} is a farsighted stable set.

The proof of Theorem 2 can be found in Appendix A.1. Since {𝜇𝐸} is a singleton set, internal stability (IS) is satisfied. We provide 
the intuition for external stability (ES) by means of Example 2. Take for instance the matching 𝜇0 = {(𝑖1, 𝑠3), (𝑖2, 𝑠1), (𝑖3, 𝑠3), (𝑖4, 𝑠3),
(𝑖5, 𝑠2), (𝑖6, 𝑠4), (𝑖7, 𝑠2), (𝑖8, 𝑠2)}. Following the steps as in the proof of Theorem 2, we construct a farsighted improving from 𝜇0
to 𝜇𝐸 = {(𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠1), (𝑖4, 𝑠3), (𝑖5, 𝑠4), (𝑖6, 𝑠2), (𝑖7, 𝑠2), (𝑖8, 𝑠3)} = 𝜇7. In the first round of ETTC, there are two cycles, one 
cycle 𝑐11 = ((𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠3)) and a second cycle 𝑐21 = ((𝑖5, 𝑠3), (𝑖2, 𝑠4)). Notice that student 𝑖2 is involved in both cycles. 
Looking forward towards 𝜇𝐸 , the coalition of students and schools belonging to 𝑐11 , i.e. {𝑖1, 𝑖2, 𝑖3, 𝑠1, 𝑠2, 𝑠3}, deviates from 𝜇0
to reach the matching 𝜇1 = {(𝑖1, 𝑠1), (𝑖2, 𝑠2), (𝑖3, 𝑠3), (𝑖4, 𝑠3), (𝑖5, 𝑖5), (𝑖6, 𝑠4), (𝑖7, 𝑠2), (𝑖8, 𝑠2)} so that student 𝑖1 joins school 𝑠1, stu-

dent 𝑖2 joins school 𝑠2 and student 𝑖3 remains with school 𝑠3. That is, each student is matched to the school from the pair 
student-school in 𝑐11 she belongs to. By doing so, student 𝑖1 already vacates a slot at school 𝑠3. Next, the coalition of stu-

dents {𝑖1, 𝑖2, 𝑖3} deviates from 𝜇1 so that student 𝑖1 leaves school 𝑠1, student 𝑖2 leaves school 𝑠2 and student 𝑖3 leaves school 𝑠3
to reach the matching 𝜇2 = {(𝑖1, 𝑖1), (𝑖2, 𝑖2), (𝑖3, 𝑖3), (𝑖4, 𝑠3), (𝑖5, 𝑖5), (𝑖6, 𝑠4), (𝑖7, 𝑠2), (𝑖8, 𝑠2)} where all three students are unmatched. 
Next, the coalition of students and schools belonging to 𝑐21 , i.e. {𝑖2, 𝑖5, 𝑠3, 𝑠4}, deviates from 𝜇2 to reach the matching 𝜇3 =
{(𝑖1, 𝑖1), (𝑖2, 𝑠4), (𝑖3, 𝑖3), (𝑖4, 𝑠3), (𝑖5, 𝑠3), (𝑖6, 𝑖6), (𝑖7, 𝑠2), (𝑖8, 𝑠2)} so that student 𝑖5 joins school 𝑠3 and student 𝑖2 joins school 𝑠4. Next, 
the coalition of students {𝑖2, 𝑖5} deviates from 𝜇3 so that student 𝑖2 leaves school 𝑠4 and student 𝑖5 leaves school 𝑠3 to reach the 
matching 𝜇4 = {(𝑖1, 𝑖1), (𝑖2, 𝑖2), (𝑖3, 𝑖3), (𝑖4, 𝑠3), (𝑖5, 𝑖5), (𝑖6, 𝑖6), (𝑖7, 𝑠2), (𝑖8, 𝑠2)} so that both students are unmatched. Next, the students 
{𝑖1, 𝑖2, 𝑖3, 𝑖5} join their schools in 𝜇𝐸 leading to {(𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠1), (𝑖4, 𝑠3), (𝑖5, 𝑠4), (𝑖6, 𝑖6), (𝑖7, 𝑖7), (𝑖8, 𝑠2)} = 𝜇5.

Notice that, in the second step, student 𝑖4 is already matched to 𝑠3 in 𝜇5 and 𝑐12 = ((𝑖4, 𝑠3)). Hence, she simply remains 
matched to 𝑠3 = 𝜇𝐸 (𝑖4) along the farsighted improving path. In the third step, given that 𝑐13 = ((𝑖7, 𝑠2)), student 𝑖7 remains 
matched to school 𝑠2 = 𝜇𝐸 (𝑖7). In the fourth step, there is only one cycle 𝑐14 involving student-school pairs (𝑖6, 𝑠3), (𝑖8, 𝑠2). 
Since student 𝑖8 is already matched to 𝑠2 and student 𝑖6 is unmatched in 𝜇6, only student 𝑖8 leaves her school 𝑠2 to reach 
{(𝑖1, 𝑠2), (𝑖2, 𝑠3), (𝑖3, 𝑠1), (𝑖4, 𝑠3), (𝑖5, 𝑠4), (𝑖6, 𝑖6), (𝑖7, 𝑠2), (𝑖8, 𝑖8)} = 𝜇6 where both are unmatched. Finally, student 𝑖6 joins school 𝑠2 and 
student 𝑖8 joins school 𝑠3 to reach the ETTC matching 𝜇𝐸 = 𝜇7.

Thus, 𝜇𝐸 ∈ 𝜙(𝜇0). Again, it holds in general that, from any 𝜇 ≠ 𝜇𝐸 there exists a farsighted improving path leading to 𝜇𝐸 . Thus, 
the matching obtained from the ETTC algorithm also preserves the property of being stable once students are farsighted.

How much farsightedness from the students do we need to stabilize the matching obtained from the ETTC algorithm? Let 𝐶𝑘 =
{𝑐1
𝑘
, 𝑐2
𝑘
, … , 𝑐𝐿𝑘

𝑘
} be the set of cycles in Step 𝑘.B of the ETTC algorithm (formally described in Appendix A.1), for 𝑘 = 1, … , ̄𝑘. Let 

𝜏(𝑖, 𝑐𝑙
𝑘
) = #{(𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
∣ 𝑗 = 𝑖} be the number of distinct pairs involving student 𝑖 in cycle 𝑐𝑙

𝑘
and let 𝜏(𝑐𝑙

𝑘
) =max𝑖∈{𝑗∈𝐼 ∣(𝑗,𝑠)∈𝑐𝑙

𝑘
} 𝜏(𝑖, 𝑐

𝑙
𝑘
). 

From the construction of a farsighted improving path in the proof of Theorem 2, we have that the minimum degree of farsightedness 
that guarantees that students involve in any cycle always reach their ETTC assignment is

14 There is always at least one cycle in each step. If some student appears in the same cycle or in different cycles with different schools, then she is definitely assigned 
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a seat at her top choice among those schools while the other seats she was pointing to remain to be inherited later on.
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𝜏max = max
𝑘∈{1,…,𝑘̄}

(
𝐿𝑘∑
𝑙=1

2𝜏(𝑐𝑙𝑘)

)
+ 1.

Corollary 3. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem and 𝜇𝐸 be the matching obtained from the Equitable Top Trading Cycles mech-

anism. The singleton set {𝜇𝐸} is a horizon-𝑘 farsighted stable set for 𝑘 ≥ 𝜏max.

Notice that in Example 2, the farsighted improving path from 𝜇0 to 𝜇𝐸 requires a degree of farsightedness equal to 5 so that 
students 𝑖1, 𝑖2 and 𝑖3 have incentives to engage a move in 𝜇0 looking forward towards 𝜇5 where they already obtain their ETTC 
assignment. Since student 𝑖2 is involved in two cycles in the first round of ETTC, 𝜏max is equal to 5. Thus, compared to the TTC, the 
ETTC improves in terms of no justified envy, but requires more farsightedness on behalf of students.

6.2. (First) Clinch and Trade algorithm

Morrill (2015) introduces two variations of the Top Trading Cycles mechanism for selecting a matching for each school problem: 
the First Clinch and Trade mechanism (FCT) and the Clinch and Trade mechanism (CT). Both mechanisms intend to mitigate the 
following problem. In the TTC mechanism, if a student 𝑖’s most preferred school is 𝑠 and the student has one of the 𝑞𝑠 highest 
priorities at 𝑠, then 𝑖 is always assigned to 𝑠. However, until 𝑖 has the highest priority at 𝑠, the TTC mechanism allows 𝑖 to trade her 
priority at other schools to be assigned to 𝑠. Such trade may cause distortions regarding the elimination of justified envy.

In the First Clinch and Trade algorithm (FCT), a student that initially has one of the 𝑞𝑠 highest priorities at a school 𝑠 (she is 
guaranteed a seat at 𝑠), cannot trade with another student to get 𝑠. The FCT algorithm runs basically the TTC algorithm but, at each 
round, if a student points at a school where she is guaranteed a seat, the student is assigned to the school and cannot trade her 
priority. For the remaining students, the TTC is run and the students who have the highest priorities at some schools are allowed to 
trade their priorities and are assigned their top choices.15

Example 3 (Morrill, 2015). Consider a school choice problem ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ with 𝐼 = {𝑖1, 𝑖2, 𝑖3} and 𝑆 = {𝑠1, 𝑠2}. Students’ preferences 
and schools’ priorities and capacities are as follows.

Students

𝑃𝑖1 𝑃𝑖2 𝑃𝑖3

𝑠2 𝑠1 𝑠2
𝑠1 𝑠2 𝑠1

Schools

𝐹𝑠1 𝐹𝑠2

𝑞𝑠 2 1

𝑖1 𝑖2
𝑖2 𝑖3
𝑖3 𝑖1

Let 𝜇𝐹 be the matching obtained from the FCT mechanism. A formal description of the FCT algorithm can be found in Morrill 
(2015) and Atay et al. (2022a). By means of Example 3 we illustrate the mechanism behind the FCT algorithm. In the first round, 
each student points to her top choice school. That is, 𝑖1 points to 𝑠2, 𝑖2 points to 𝑠1 and 𝑖3 points to 𝑠2. Student 𝑖1 and student 𝑖2
are guaranteed admissions to school 𝑠1 since both have one of the two highest rankings at school 𝑠1. Student 𝑖2 is also guaranteed 
admission to school 𝑠2 since she is ranked first at school 𝑠2. Student 𝑖2 is pointing to 𝑠1, and so she is clinched to school 𝑠1 and the 
match (𝑖2, 𝑠1) is formed. Student 𝑖1 is not pointing to a school where she is guaranteed admission. Hence, she is not clinched to any 
school and she participates next with 𝑖3 to the trading procedure. Schools 𝑠1 and 𝑠2 point to their highest ranked student, respectively 
𝑖1 and 𝑖2. Hence, there is no cycle and no match is formed. In the second round, each student points to her top choice school that 
has still available capacity. That is, 𝑖1 points to 𝑠2 and 𝑖3 points to 𝑠2. Guaranteed admissions do not change. Hence, nor 𝑖1 nor 𝑖3 are 
clinched to some school and so they participate next to the trading procedure. School 𝑠1 points to 𝑖1 while school 𝑠2 points now to 𝑖3
and so the match (𝑖3, 𝑠2) is formed. Student 𝑖1 remains unmatched. In the third round, each remaining student points to her preferred 
school that has still available capacity. That is, student 𝑖1 points now to school 𝑠1. Since she is guaranteed admission to school 𝑠1, 
she is clinched and assigned to school 𝑠1. We obtain the matching 𝜇𝐹 = {(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2)}.

The matching obtained from the FCT algorithm differs from the matching obtained from the TTC algorithm, 𝜇𝑇 = {(𝑖1, 𝑠2), (𝑖2, 𝑠1),
(𝑖3, 𝑠1)}. In the TTC mechanism, students 𝑖1 and 𝑖2 first exchange their priorities to form the matches (𝑖1 , 𝑠2) and (𝑖2, 𝑠1). Student 𝑖1
has priority at 𝑠1 while student 𝑖2 has priority at 𝑠2. However, student 𝑖3 is ranked above student 𝑖1 at school 𝑠2. In addition, student 
𝑖2 is guaranteed admission at school 𝑠1. The FCT mechanism intends to remedy to such drawback.

While the FCT algorithm does not update the students that are able to clinch her most preferred school, the Clinch and Trade 
algorithm (CT) removes from the priority list of each school the students that are guaranteed a seat. As a result, the priorities of the 
remaining students weakly improve and thus, students that initially are not guaranteed a seat at their most preferred school may now 

15 Morrill (2015) shows that the FCT is Pareto efficient, strategy-proof, non-bossy, group strategy-proof, reallocation proof and independent of the order in which 
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be guaranteed one of the remaining seats. Let 𝜇𝐶 be the matching obtained from the CT mechanism. A formal description of the CT 
algorithm can be found in Morrill (2015) and Atay et al. (2022a).16 In Example 3 both mechanisms lead to the same matching.17

Theorem 3. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. Let 𝜇𝐹 and 𝜇𝐶 be the matchings obtained from the First Clinch and Trade 
mechanism and the Clinch and Trade mechanism, respectively. Both singleton sets {𝜇𝐹} and {𝜇𝐶} are farsighted stable sets.

The proof is similar to the one for Theorem 1 and can be found in Atay et al. (2022a). Since {𝜇𝐹 } and {𝜇𝐶} are singleton sets, 
internal stability (IS) is satisfied.

We now provide the intuition for external stability (ES) of 𝜇𝐹 by means of Example 3. Take for instance the matching 𝜇0 =
{(𝑖1, 𝑠2), (𝑖2, 𝑠1), (𝑖3, 𝑠1)} = 𝜇𝑇 . We now construct a farsighted improving from 𝜇0 to 𝜇𝐹 = {(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2)} = 𝜇2. First, we 
consider student 𝑖2 who is the only student to be clinched in the first round of the FCT. Since student 𝑖2 is matched to school 𝑠1
in both 𝜇0 and 𝜇𝐹 she does not participate to any deviation and remains clinched to 𝑠1 along the farsighted improving path. That 
is, (𝑖2, 𝑠1) ∈ 𝜇𝑙 , 𝑙 = 0, 1, 2. There is no cycle between schools and students who are not clinched in the first round of the FCT. In 
the second round of the FCT, none of the remaining students is clinched to some school. However, student 𝑖3 and school 𝑠2 form a 
cycle. So, looking forward towards 𝜇𝐹 , the coalition 𝑁0 = {𝑖3, 𝑠2} deviates from 𝜇0 so that student 𝑖3 joins school 𝑠2 to reach the 
matching 𝜇1 = {(𝑖1, 𝑖1), (𝑖2, 𝑠1), (𝑖3, 𝑠2)}. Student 𝑖3 is matched to her preferred school 𝑠2 in 𝜇1 and she has a higher priority than 𝑖1 at 
𝑠2. By doing so, student 𝑖1 is pushed out of school 𝑠2. In the third round of the FCT, student 𝑖1 points to school 𝑠1 and is guaranteed 
admission at school 𝑠1. So, from 𝜇1, the coalition 𝑁1 = {𝑖1, 𝑠1} deviates so that student 𝑖1 joins school 𝑠1 to reach the matching 
𝜇2 = {(𝑖1, 𝑠1), (𝑖2, 𝑠1), (𝑖3, 𝑠2)} = 𝜇𝐹 . Thus, 𝜇𝐹 ∈ 𝜙(𝜇𝑇 ).

In fact, it holds in general that, from any 𝜇 ≠ 𝜇𝐹 there exists a farsighted improving path leading to 𝜇𝐹 . So, {𝜇𝐹 } is a farsighted 
stable set and the matching obtained from the FCT algorithm preserves the property of being stable once students are farsighted. 
Likewise, {𝜇𝐶} is a farsighted stable set.

Similarly to the TTC, we have that students belonging to a cycle only need to look forward three steps ahead to have incentives 
for engaging a move towards the matches they have in the matching obtained from the FCT (CT) algorithm, 𝜇𝐹 (𝜇𝐶 ).

Corollary 4. Let ⟨𝐼, 𝑆, 𝑞, 𝑃 , 𝐹 ⟩ be a school choice problem. Let 𝜇𝐹 and 𝜇𝐶 be the matchings obtained from the First Clinch and Trade 
mechanism and the Clinch and Trade mechanism, respectively. Both singleton sets {𝜇𝐹 } and {𝜇𝐶} are horizon-𝑘 farsighted stable set for 
𝑘 ≥ 3.

7. Conclusion

We have considered priority-based school choice problems. Once students are farsighted, the matching obtained from the TTC 
mechanism becomes stable: a singleton set consisting of the TTC matching is a farsighted stable set. However, the matching obtained 
from the DA mechanism may not belong to any farsighted stable set. Hence, the TTC mechanism provides an assignment that is not 
only Pareto efficient but also farsightedly stable. Moreover, looking forward three steps ahead is already sufficient for stabilizing 
the matching obtained from the TTC. Since the choice between the DA mechanism or the TTC mechanism usually depends on the 
priorities of the policy makers, farsightedness and Pareto efficiency may tip the balance in favor of TTC or one of its variations.

In this paper, we have focused on priority-based school choice problems where arbitrary groups of students (and schools) can move 
together and where schools could have more than one seat of capacity. We have shown that the TTC matching is a farsighted stable 
set when allowing deviations of coalitions of arbitrary size. In matching theory, it is often assumed that only individual or pairwise 
deviations are feasible and most results are robust to deviations of coalitions of arbitrary size. However, this is not always true once 
agents are farsighted. In a follow-up paper, Atay et al. (2022b) have found that, for one-to-one priority-based matching problems (i.e., 
problems with only one vacant seat (object) to be assigned among the set of agents) where only individual or pairwise deviations 
are allowed, the TTC matching is stable provided agents are sufficiently farsighted. However, we have shown in the present paper 
that, once there are more than one seats to be allocated, more cooperation among students is needed to sustain the TTC matching as 
farsightedly stable.18
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16 Morrill (2015) shows that the CT mechanism is Pareto efficient and strategy-proof. Unlike the TTC mechanism, the CT mechanism is bossy, not group strategy-proof, 
and not independent of the order in which cycles are processed.
17 In Example 1, 𝜇𝑇 = 𝜇𝐹 = 𝜇𝐶 = 𝜇𝐸 ≠ 𝜇𝐷 . In Example 2, 𝜇𝐸 ≠ 𝜇𝑇 = 𝜇𝐹 = 𝜇𝐶 ≠ 𝜇𝐷 . In Example 3, 𝜇𝑇 = 𝜇𝐸 ≠ 𝜇𝐹 = 𝜇𝐶 = 𝜇𝐷 .
18 In fact, one can show that Theorem 1 holds when restricting the deviations to coalitions involving at most two students. However, longer farsighted improving 
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paths for reaching the TTC matching from any other matching would be required.
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Appendix A

A.1. Equitable Top Trading Cycles algorithm

The Equitable Top Trading Cycles mechanism (Hakimov and Kesten, 2018) finds a matching by means of the following Equitable 
Top Trading Cycles algorithm (ETTC).

Step 1. Set 𝑞1𝑠 = 𝑞𝑠 for all 𝑠 ∈ 𝑆 where 𝑞1𝑠 is the initial capacity of school 𝑠 at Step 1.

1.A. (Inheritance) All seats are available to inherit in the first step and students are assigned seats according to the priority orders 𝐹
to form student-school pairs. Let 𝐹+1(𝑠, 𝑖) = {𝑗 ∈ 𝐼 ∣ 𝐹𝑠(𝑗) < 𝐹𝑠(𝑖)} be the set of students who have higher priority than student 𝑖
for school 𝑠 in Step 1. Let 1 = {(𝑖, 𝑠) ∈ 𝐼 × 𝑆 ∣ #𝐹+1(𝑠, 𝑖) ≤ 𝑞1𝑠 } be the set of student-school pairs formed by assigning students 
one-by-one to the schools while respecting their capacities. In other words, 1 consists of student-school pairs such that each 
school 𝑠 pairs with 𝑞𝑠 highest priority students.

1.B. (Pointing) Each student-school pair (𝑖, 𝑠) ∈ 1 points to the student-school pair (𝑖′, 𝑠′) ∈ 1 such that (1) 𝑠′ is the best choice 
of student 𝑖 in 𝑃𝑖, and (2) student 𝑖′ has the highest priority in 𝐹𝑠 among students who are assigned a seat at 𝑠′ , i.e. (𝑖, 𝑠) ↦ (𝑖′, 𝑠′)
such that 𝐹𝑠(𝑖′) < 𝐹𝑠(𝑙) for any other (𝑙, 𝑠′) ∈ 1. Notice that if (𝑖, 𝑠) ∈ 1 and 𝑠 is the best choice school for 𝑖, then all 
pairs (𝑖, 𝑠′) ∈ 1 point to (𝑖, 𝑠). Since there is a finite number of students and schools, there is at least one cycle. Let 𝐶1 =
{𝑐11 , 𝑐

2
1 , … , 𝑐𝐿1

1 } be the set of cycles in Step 1.B where 𝐿1 ≥ 1 is the number of cycles in Step 1.B.

1.C. (Trading) If student 𝑖 appears in the same cycle or in different cycles with different schools, then she is assigned a seat at her top 
choice among those schools. That is, for each 𝑖 ∈ 𝐼 such that there exists (𝑖, 𝑠) ↦ (𝑖′, 𝑠′) in 𝑐𝑙1 and (𝑖, ̂𝑠) ↦ (𝑖′′, 𝑠′′) in 𝑐𝑙′1 , possibly 
𝑐𝑙1 = 𝑐

𝑙′

1 , 𝑚1(𝑖) = 𝑠′ such that 𝑠′𝑃𝑖𝑠′′. The seats at all other schools than her top choice she points to in those cycles remain to be 
inherited. If student 𝑖 only appears once in a cycle, say 𝑐𝑙1, then she is matched with the school that is in the student-school pair 
she points to, i.e. if (𝑖, 𝑠) ↦ (𝑖′, 𝑠′) (possibly 𝑠 = 𝑠′) in 𝑐𝑙1, then 𝑚1(𝑖) = 𝑠′. Finally, if there is a student-school pair participating in 
a cycle, (𝑖, 𝑠) ∈ 𝑐𝑙1, and another student-school pair with the same student and a different school not participating at any cycle, 
(𝑖, 𝑠′) ∉ 𝑐𝑙′1 , 𝑐𝑙′1 ∈ 𝐶1, then this seat at school 𝑠′ remains to be inherited.

Let 𝐼1 = {𝑖 ∈ 𝐼 ∣ (𝑖, 𝑠) ∈ 𝑐𝑙1, 𝑐
𝑙
1 ∈ 𝐶1} be the set of students involved in a cycle in Step 1. Let 𝑀1 =

⋃
𝑖∈𝐼1 (𝑖, 𝑚1(𝑖)) be all the matches 

formed between students and schools in Step 1. All student-school pairs that involve students who are matched in Step 1 are 
removed. Let −

1 = {(𝑖, 𝑠) ∈ 1 ∣ 𝑖 ∈ 𝐼1} be the set of pairs from 1 that are removed in Step 1. Let +
1 = {(𝑖, 𝑠) ∈ 1 ∣ 𝑖 ∉ 𝐼1}

be the set of pairs from 1 that are not removed in Step 1. Let 𝑆+
1 = {𝑠 ∈ 𝑆 ∣ (𝑖, 𝑠) ∈ +

1 , 𝑖 ∈ 𝐼} be the set of schools that were 
assigned in Step 1.A some student who are not matched in Step 1.C.

Let 𝐼1 = 𝐼 ⧵ 𝐼1 be the set of students who have not been assigned a seat at the end of Step 1. If 𝐼1 ≠ ∅, then go to Step 2.A. 
Otherwise, go to End.

Step 𝑘 ≥ 2. At the beginning of Step 𝑘, the remaining capacity of school 𝑠 is 𝑞𝑘𝑠 and the set of remaining students is 𝐼𝑘−1.

𝑘.A. (Inheritance) Let 𝐹+𝑘(𝑠, 𝑖) = {𝑗 ∈ 𝐼𝑘−1 ∣ 𝐹𝑠(𝑗) < 𝐹𝑠(𝑖)} be the set of students who have higher priority than student 𝑖 for school 
𝑠 in Step 𝑘. Let 𝑘 = +

𝑘−1 ∪ {(𝑖, 𝑠) ∈ 𝐼𝑘−1 × 𝑆 ∣ #𝐹+𝑘(𝑠, 𝑖) ≤ 𝑞𝑘𝑠 and 𝑠 ∉ 𝑆+
𝑘−1} be the set of student-school pairs assigned 

in Step 𝑘.A where +
𝑘−1 = {(𝑖, 𝑠) ∈ 𝑘−1 ∣ 𝑖 ∉ 𝐼𝑘−1} are the student-school pairs that were not removed in Step 𝑘 − 1 and 

{(𝑖, 𝑠) ∈ 𝐼𝑘−1×𝑆 ∣ #𝐹+𝑘(𝑠, 𝑖) ≤ 𝑞𝑘𝑠 and 𝑠 ∉ 𝑆+
𝑘−1} are the student-school pairs that are inherited and formed by assigning remaining 

students one-by-one to the schools while respecting their capacities.

𝑘.B. (Pointing) Each student-school pair (𝑖, 𝑠) ∈ 𝑘 points to the student-school pair (𝑖′, 𝑠′) ∈ 𝑘 such that (1) 𝑠′ is the best choice 
of student 𝑖 in 𝑃𝑖, and (2) student 𝑖′ has the highest priority in 𝐹𝑠 among students that are assigned a seat at 𝑠′, i.e. (𝑖, 𝑠) ↦ (𝑖′, 𝑠′)
such that 𝐹𝑠(𝑖′) < 𝐹𝑠(𝑙) for any other (𝑙, 𝑠′) ∈ 𝑘. Since there is a finite number of students and schools, there is at least one 
cycle. Let 𝐶𝑘 = {𝑐1

𝑘
, 𝑐2
𝑘
, … , 𝑐𝐿𝑘

𝑘
} be the set of cycles in Step 𝑘.B where 𝐿𝑘 ≥ 1 is the number of cycles in Step 𝑘.B.

𝑘.C. (Trading) If student 𝑖 appears in the same cycle or in different cycles with different schools, then she is assigned a seat at her top 
choice among those schools. That is, for each 𝑖 ∈ 𝐼𝑘−1 such that there exists (𝑖, 𝑠) ↦ (𝑖′, 𝑠′) in 𝑐𝑙

𝑘
and (𝑖, ̂𝑠) ↦ (𝑖′′, 𝑠′′) in 𝑐𝑙′

𝑘
, possibly 

𝑐𝑙
𝑘
= 𝑐𝑙′

𝑘
, 𝑚𝑘(𝑖) = 𝑠′ such that 𝑠′𝑃𝑖𝑠′′. The seats at all other schools than her top choice she points to in those cycles remain to be 

inherited. If student 𝑖 only appears once in a cycle, say 𝑐𝑙
𝑘
, then she is matched with the school that is in the student-school pair 

she points to, i.e. if (𝑖, 𝑠) ↦ (𝑖′, 𝑠′) (possibly 𝑠 = 𝑠′) in 𝑐𝑙
𝑘
, then 𝑚𝑘(𝑖) = 𝑠′. Finally, if there is a student-school pair participating in 

a cycle, (𝑖, 𝑠) ∈ 𝑐𝑙
𝑘
, and another student-school pair with the same student and a different school not participating at any cycle, 
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(𝑖, 𝑠′) ∉ 𝑐𝑙′
𝑘

, 𝑐𝑙′
𝑘
∈ 𝐶𝑘, then this seat at school 𝑠′ remains to be inherited.
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Let 𝐼𝑘 = {𝑖 ∈ 𝐼𝑘−1 ∣ (𝑖, 𝑠) ∈ 𝑐𝑙𝑘, 𝑐
𝑙
𝑘
∈ 𝐶𝑘} be the set of students involved in a cycle in Step 𝑘. Let 𝑀𝑘 =

⋃
𝑖∈𝐼𝑘 (𝑖, 𝑚𝑘(𝑖)) be all the 

matches formed between students and schools in Step 𝑘. All student-school pairs that involve students who are matched in Step 
𝑘 are removed. Let −

𝑘 = {(𝑖, 𝑠) ∈ 𝑘 ∣ 𝑖 ∈ 𝐼𝑘} be the set of pairs from 𝑘 that are removed in Step 𝑘. Let +
𝑘
= {(𝑖, 𝑠) ∈

𝑘 ∣ 𝑖 ∉ 𝐼𝑘} be the set of pairs from 𝑘 that are not removed in Step 𝑘. Let 𝑆+
𝑘
= {𝑠 ∈ 𝑆 ∣ (𝑖, 𝑠) ∈ +

𝑘
, 𝑖 ∈ 𝐼} be the set of 

schools that were assigned in Step 𝑘.A some student who are not matched in Step 𝑘.C.

Let 𝐼𝑘 = 𝐼𝑘−1 ⧵ 𝐼𝑘 be the set of students who have not been assigned a seat at the end of Step 𝑘. If 𝐼𝑘 ≠ ∅, then go to Step 𝑘+1.A. 
Otherwise, go to End.

End The algorithm stops when all students have been removed. Let 𝑘̄ ≥ 1 be the step at which the algorithm stops. Let 𝜇𝐸 denote 
the matching obtained from the ETTC algorithm and it is given by 𝜇𝐸 =

⋃𝑘̄
𝑘=1𝑀𝑘.

Proof of Theorem 2

Since {𝜇𝐸} is a singleton set, internal stability (IS) is satisfied. (ES) Take any matching 𝜇 ≠ 𝜇𝐸 , we need to show that 𝜙(𝜇) ∋ 𝜇𝐸 . 
We build in steps a farsighted improving path from 𝜇 to 𝜇𝐸 . Let 𝜇0 = 𝜇.

Step 𝑘.1. (𝑘 ≥ 1) If (𝑖, 𝜇𝐸 (𝑖)) ∈ 𝜇𝑘−1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1
𝑘
} and 1 ≠𝐿𝑘 then go to Step 𝑘.2 with 𝜇′′′

𝑘,1 = 𝜇𝑘−1. If (𝑖, 𝜇𝐸 (𝑖)) ∈ 𝜇𝑘−1
for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
} and 1 =𝐿𝑘 then go to Step 𝑘.End with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇𝑘−1.

Otherwise, for each 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1
𝑘
}, let 𝑐1

𝑘
(𝑖) = {(𝑖, 𝑠𝑖𝑙′ )}

𝜏(𝑖,𝑐1
𝑘
)

𝑙′=1 be such that (𝑖, 𝑠𝑖𝑙′ ) ∈ 𝑐1
𝑘

and 𝑠𝑖𝑙′ = 𝑠𝑜𝑙′ ≠ 𝑠
𝑖𝑙′+1 = 𝑠𝑜𝑙′+1 with 

𝑜𝑙′ < 𝑜𝑙′+1 for 𝑙′ = 1, ..., 𝜏(𝑖, 𝑐1
𝑘
) − 1. That is, 𝑐1

𝑘
(𝑖) is an ordered set of the pairs involving student 𝑖 in cycle 𝑐1

𝑘
where 𝜏(𝑖, 𝑐1

𝑘
) =

#{(𝑗, 𝑠) ∈ 𝑐1
𝑘
∣ 𝑗 = 𝑖} is the number of distinct pairs involving student 𝑖 in cycle 𝑐1

𝑘
. Let 𝜏(𝑐1

𝑘
) =max𝑖∈{𝑗∈𝐼 ∣(𝑗,𝑠)∈𝑐1

𝑘
} 𝜏(𝑖, 𝑐

1
𝑘
).

Let Λ𝑘,1(𝑠) = #{(𝑖, 𝑠′) ∉ 𝜇𝑘−1 ∣ (𝑖, 𝑠′) = (𝑖, 𝑠𝑖1) with (𝑖, 𝑠𝑖1) ∈ 𝑐1
𝑘
(𝑖) and 𝑠′ = 𝑠} be the number of students who are not yet matched 

in 𝜇𝑘−1 to school 𝑠 that ranks them among the first 𝑞𝑠 positions and is ranked first in their ordered set.

If (𝑖, 𝜇𝐸 (𝑖)) ∉ 𝜇𝑘−1 for some 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1
𝑘
} then 𝜇′

𝑘,1 = 𝜇𝑘−1 − {(𝑖, ̃𝜇𝑘−1) ∣ (𝑖, 𝑠) ∈ 𝑐1𝑘 and 𝜇𝑘−1(𝑖) ≠ 𝑖} + {(𝑖, 𝑠𝑖1) ∣ 𝑖 ∈ {𝑗 ∈ 𝐼 ∣
(𝑗, 𝑠) ∈ 𝑐1

𝑘
}} −{(𝑗, 𝑠) ∈ 𝜇𝑘−1 ∣ Λ𝑠𝑗 (𝜇𝑘−1) <Λ𝑘,1(𝑠) − 𝑞𝑠 +#𝜇𝑘−1(𝑠)} where Λ𝑠𝑗 (𝜇𝑘−1) = #{𝑙 ∈ 𝐼 ∣ (𝑙, 𝑠) ∈ 𝜇𝑘−1 and 𝐹𝑠(𝑙) > 𝐹𝑠(𝑗)} is the 

number of students who are matched to school 𝑠 in 𝜇𝑘−1 and have a lower priority than student 𝑗. Looking forward towards 𝜇𝐸
students belonging to {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
} weakly prefer 𝜇𝐸 to 𝜇𝑘−1 with at least one of them strictly preferring 𝜇𝐸 .

Next, if (𝑖, 𝜇′
𝑘,1(𝑖)) = (𝑖, 𝜇𝐸 (𝑖)) and 𝑐1

𝑘
= {(𝑖, 𝜇𝐸 (𝑖))} then 𝜇′′

𝑘,1 = 𝜇
′
𝑘,1. Otherwise, 𝜇′′

𝑘,1 = 𝜇
′
𝑘,1 − {(𝑖, 𝑠𝑖1) ∣ 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
}}

so that all students involved in 𝑐1
𝑘

are unmatched. If 𝜏(𝑖, 𝑐1
𝑘
) = 1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
} and 1 ≠ 𝐿𝑘, then go to Step 

𝑘.2. If 𝜏(𝑖, 𝑐1
𝑘
) = 1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
} and 1 = 𝐿𝑘, then go to Step 𝑘.End with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇′′

𝑘,1. If 𝜏(𝑖, 𝑐1
𝑘
) ≠ 1 for some 

𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1
𝑘
} then go to Step 𝑘.1.A.

Step 𝑘.1.A Take all 𝑖 ∈ 𝐼1(𝑐1
𝑘
) = {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
and 𝜏(𝑗, 𝑐1

𝑘
) > 1}, where 𝐼1(𝑐1

𝑘
) is the set of all students who are involved more 

than once in cycle 𝑐1
𝑘
. Let 𝑃 (𝑠𝑖2) = {(𝑗, 𝑠) ∣ 𝑗 ∈ 𝐼1(𝑐1

𝑘
) and 𝑠 = 𝑠𝑖2} be the set of student-school pairs involving school 𝑠𝑖2 in cycle 

𝑐𝑘1 . Let ̂𝑙(𝑠𝑖2) = #𝜇′′
𝑘,1(𝑠

𝑖2) + #𝑃 (𝑠𝑖2). From 𝜇′′
𝑘,1, looking forward towards 𝜇𝐸 , each student 𝑖 ∈ 𝐼1(𝑐1

𝑘
) matches with school 𝑠𝑖2. In 

the case more students are assigned to some school than the number of available slots, then students with a lower priority are 
dropped off. Hence, from 𝜇′′

𝑘,1 we reach the matching

𝜇2
𝑘,1 = 𝜇

′′
𝑘,1 + {(𝑖, 𝑠𝑖2) ∣ 𝑖 ∈ 𝐼1(𝑐1𝑘)}

−
{
(𝑗𝑙, 𝑠𝑖

12) ∣ 𝐹
𝑠𝑖
12 (𝑗𝑙) > 𝐹𝑠𝑖12 (𝑗

′) for all 𝑗′ ∈ 𝜇′′
𝑘,1(𝑠

𝑖12), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖12)
𝑙=1

if 𝑙̂(𝑠𝑖12) ≥ 𝑞
𝑠𝑖
12

−
{
(𝑗𝑙, 𝑠𝑖

22) ∣ 𝐹
𝑠𝑖
22 (𝑗𝑙) > 𝐹𝑠𝑖22 (𝑗

′) for all 𝑗′ ∈ 𝜇′′
𝑘,1(𝑠

𝑖22), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖22)
𝑙=1

if 𝑙̂(𝑠𝑖22) ≥ 𝑞
𝑠𝑖
22

⋮

−
{
(𝑗𝑙, 𝑠𝑖

𝑠̄2) ∣ 𝐹
𝑠𝑖
𝑠̄2 (𝑗𝑙) > 𝐹𝑠𝑖𝑠̄2 (𝑗

′) for all 𝑗′ ∈ 𝜇′′
𝑘,1(𝑠

𝑖𝑠̄2), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖𝑠̄2)
𝑙=1

if 𝑙̂(𝑠𝑖𝑠̄2) ≥ 𝑞
𝑠𝑖
𝑠̄2 ,

where {𝑠𝑖12, 𝑠𝑖22, … , 𝑠𝑖𝑠̄2} = {𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖2 for 𝑖 ∈ 𝐼1(𝑐1
𝑘
)} and 𝑠̄ = #{𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖2 for 𝑖 ∈ 𝐼1(𝑐1

𝑘
)}.

Looking forward towards 𝜇𝐸 students belonging to 𝐼1(𝑐1
𝑘
) prefer 𝜇𝐸 to 𝜇2

𝑘,1. Next, each student 𝑖 ∈ 𝐼1(𝑐1
𝑘
) leaves her school 𝑠𝑖2

to become unmatched and guaranteeing a free slot at school 𝑠𝑖2 . We reach 𝜇2′
𝑘,1 = 𝜇

2
𝑘,1 − {(𝑖, 𝑠𝑖2) ∣ 𝑖 ∈ 𝐼1(𝑐1

𝑘
)}.

Next, take all 𝑖 ∈ 𝐼2(𝑐1
𝑘
) = {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐1

𝑘
and 𝜏(𝑗, 𝑐1

𝑘
) > 2}, where 𝐼2(𝑐1

𝑘
) is the set of all students who are involved more than 

twice in cycle 𝑐1
𝑘
. Let 𝑃 (𝑠𝑖3) = {(𝑗, 𝑠) ∣ 𝑗 ∈ 𝐼2(𝑐1

𝑘
) and 𝑠 = 𝑠𝑖3} be the set of student-school pairs involving school 𝑠𝑖3 in cycle 𝑐1

𝑘
. Let 

𝑙̂(𝑠𝑖3) = #𝜇2′
𝑘,1(𝑠

𝑖3) +#𝑃 (𝑠𝑖3). From 𝜇2′
𝑘,1, looking forward towards 𝜇𝐸 , each student 𝑖 ∈ 𝐼2(𝑐1

𝑘
) matches with school 𝑠𝑖3. In the case 

more students are assigned to some school than the number of available slots, then students with a lower priority are dropped 
off. Hence, from 𝜇2′

𝑘,1 we reach the matching
161

𝜇3
𝑘,1 = 𝜇

2′
𝑘,1 + {(𝑖, 𝑠𝑖3) ∣ 𝑖 ∈ 𝐼2(𝑐1𝑘)}
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−
{
(𝑗𝑙, 𝑠𝑖

13) ∣ 𝐹
𝑠𝑖
13 (𝑗𝑙) > 𝐹𝑠𝑖13 (𝑗

′) for all 𝑗′ ∈ 𝜇2′
𝑘,1(𝑠

𝑖13), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖13)
𝑙=1

if 𝑙̂(𝑠𝑖13) ≥ 𝑞
𝑠𝑖
13

−
{
(𝑗𝑙, 𝑠𝑖

23) ∣ 𝐹
𝑠𝑖
23 (𝑗𝑙) > 𝐹𝑠𝑖23 (𝑗

′) for all 𝑗′ ∈ 𝜇2′
𝑘,1(𝑠

𝑖23), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖23)
𝑙=1

if 𝑙̂(𝑠𝑖23) ≥ 𝑞
𝑠𝑖
23

⋮

−
{
(𝑗𝑙, 𝑠𝑖

𝑠̄3) ∣ 𝐹
𝑠𝑖
𝑠̄3 (𝑗𝑙) > 𝐹𝑠𝑖𝑠̄3 (𝑗

′) for all 𝑗′ ∈ 𝜇2′
𝑘,1(𝑠

𝑖𝑠̄3), 𝑗′ ≠ 𝑗𝑙
}𝑙̂(𝑠𝑖𝑠̄3)
𝑙=1

if 𝑙̂(𝑠𝑖𝑠̄3) ≥ 𝑞
𝑠𝑖
𝑠̄3 ,

where {𝑠𝑖13, 𝑠𝑖23, … , 𝑠𝑖𝑠̄3} = {𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖3 for 𝑖 ∈ 𝐼2(𝑐1
𝑘
)} and 𝑠̄ = #{𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖3 for 𝑖 ∈ 𝐼2(𝑐1

𝑘
)}.

Looking forward towards 𝜇𝐸 students belonging to 𝐼2(𝑐1
𝑘
) prefer 𝜇𝐸 to 𝜇3

𝑘,1. Next, each student 𝑖 ∈ 𝐼2(𝑐1
𝑘
) leaves her school 𝑠𝑖3

to become unmatched and guaranteeing a free slot at school 𝑠𝑖3 . We reach 𝜇3′
𝑘,1 = 𝜇

3
𝑘,1 − {(𝑖, 𝑠𝑖3) ∣ 𝑖 ∈ 𝐼2(𝑐1

𝑘
)}.

We repeat this process until we reach in the end the matching 𝜇′′′
𝑘,1 = 𝜇

𝜏(𝑐1
𝑘
)

𝑘,1 − {(𝑖, 𝑠𝑖𝜏(𝑐
1
𝑘
)) ∣ 𝑖 ∈ 𝐼𝜏(𝑐

1
𝑘
)−1(𝑐1

𝑘
)} where all students 

involved in 𝑐1
𝑘

are unmatched and each school 𝑠 involved in 𝑐1
𝑘

has at least #{(𝑖, 𝑠′) ∈ 𝑐1
𝑘
∣ 𝑠′ = 𝑠} free slots.

Step 𝑘.𝑙. (𝑙 > 1) If (𝑖, 𝜇𝐸 (𝑖)) ∈ 𝜇′′′
𝑘,𝑙−1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} and 𝑙 ≠ 𝐿𝑘 then go to Step 𝑘.𝑙 + 1 with 𝜇′′′

𝑘,𝑙
= 𝜇′′′

𝑘,𝑙−1. If (𝑖, 𝜇𝐸 (𝑖)) ∈
𝜇′′′
𝑘,𝑙−1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} and 𝑙 =𝐿𝑘 then go to Step 𝑘.End with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇′′′

𝑘,𝑙−1.

Otherwise, for each 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙
𝑘
}, let 𝑐𝑙

𝑘
(𝑖) = {(𝑖, 𝑠𝑖𝑙′ )}

𝜏(𝑖,𝑐𝑙
𝑘
)

𝑙′=1 be such that (𝑖, 𝑠𝑖𝑙′ ) ∈ 𝑐𝑙
𝑘

and 𝑠𝑖𝑙′ = 𝑠𝑜𝑙′ ≠ 𝑠
𝑖𝑙′+1 = 𝑠𝑜𝑙′+1 with 

𝑜𝑙′ < 𝑜𝑙′+1 for 𝑙′ = 1, ..., 𝜏(𝑖, 𝑐𝑙
𝑘
) − 1. That is, 𝑐𝑙

𝑘
(𝑖) is an ordered set of the pairs involving student 𝑖 in cycle 𝑐𝑙

𝑘
where 𝜏(𝑖, 𝑐𝑙

𝑘
) =

#{(𝑗, 𝑠) ∈ 𝑐𝑙
𝑘
∣ 𝑗 = 𝑖} is the number of distinct pairs involving student 𝑖 in cycle 𝑐𝑙

𝑘
. Let 𝜏(𝑐𝑙

𝑘
) =max𝑖∈{𝑗∈𝐼 ∣(𝑗,𝑠)∈𝑐𝑙

𝑘
} 𝜏(𝑖, 𝑐

𝑙
𝑘
).

Let Λ𝑘,𝑙(𝑠) = #{(𝑖, 𝑠′) ∉ 𝜇′′′
𝑘,𝑙−1 ∣ (𝑖, 𝑠

′) = (𝑖, 𝑠𝑖1) with (𝑖, 𝑠𝑖1) ∈ 𝑐𝑙
𝑘
(𝑖) and 𝑠′ = 𝑠} be the number of students who are not yet matched 

in 𝜇′′′
𝑘,𝑙−1 to school 𝑠 that ranks them among the first 𝑞𝑠 positions and is ranked first in their ordered set.

If (𝑖, 𝜇𝐸 (𝑖)) ∉ 𝜇′′′
𝑘,𝑙−1 for some 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} then 𝜇′

𝑘,𝑙
= 𝜇′′′

𝑘,𝑙−1 − {(𝑖, 𝜇′′′
𝑘,𝑙−1(𝑖)) ∣ (𝑖, 𝑠) ∈ 𝑐

𝑙
𝑘

and 𝜇′′′
𝑘,𝑙−1(𝑖) ≠ 𝑖} + {(𝑖, 𝑠𝑖1) ∣

𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙
𝑘
}} − {(𝑗, 𝑠) ∈ 𝜇′′′

𝑘,𝑙−1 ∣ Λ𝑠𝑗 (𝜇
′′′
𝑘,𝑙−1) < Λ𝑘,𝑙(𝑠) − 𝑞𝑠 + #𝜇′′′

𝑘,𝑙−1(𝑠)} where Λ𝑠𝑗 (𝜇
′′′
𝑘,𝑙−1) = #{𝑙′ ∈ 𝐼 ∣ (𝑙′, 𝑠) ∈

𝜇′′′
𝑘,𝑙−1 and 𝐹𝑠(𝑙′) > 𝐹𝑠(𝑗)} is the number of students who are matched to school 𝑠 in 𝜇′′′

𝑘,𝑙−1 and have a lower priority than 
student 𝑗. Looking forward towards 𝜇𝐸 students belonging to {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} weakly prefer 𝜇𝐸 to 𝜇′′′

𝑘,𝑙−1 with at least one of 
them strictly preferring 𝜇𝐸 .

Next, if (𝑖, 𝜇′
𝑘,𝑙
(𝑖)) = (𝑖, 𝜇𝐸 (𝑖)) and 𝑐𝑙

𝑘
= {(𝑖, 𝜇𝐸 (𝑖))} then 𝜇′′

𝑘,𝑙
= 𝜇′

𝑘,𝑙
. Otherwise, 𝜇′′

𝑘,𝑙
= 𝜇′

𝑘,𝑙
− {(𝑖, 𝑠𝑖1) ∣ 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
}}

so that all students involved in 𝑐𝑙
𝑘

are unmatched. If 𝜏(𝑖, 𝑐𝑙
𝑘
) = 1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} and 𝑙 ≠ 𝐿𝑘, then go to Step 

𝑘.𝑙 + 1. If 𝜏(𝑖, 𝑐𝑙
𝑘
) = 1 for all 𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
} and 𝑙 = 𝐿𝑘, then go to Step 𝑘.End with 𝜇′′′

𝑘,𝐿𝑘
= 𝜇′′

𝑘,𝑙
. If 𝜏(𝑖, 𝑐𝑙

𝑘
) ≠ 1 for some 

𝑖 ∈ {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙
𝑘
} then go to Step 𝑘.𝑙.A.

Step 𝑘.𝑙.A Take all 𝑖 ∈ 𝐼1(𝑐𝑙
𝑘
) = {𝑗 ∈ 𝐼 ∣ (𝑗, 𝑠) ∈ 𝑐𝑙

𝑘
and 𝜏(𝑗, 𝑐𝑙

𝑘
) > 1}, where 𝐼1(𝑐𝑙

𝑘
) is the set of all students who are involved more than 

once in cycle 𝑐𝑙
𝑘
. Let 𝑃 (𝑠𝑖2) = {(𝑗, 𝑠) ∣ 𝑗 ∈ 𝐼1(𝑐𝑙

𝑘
) and 𝑠 = 𝑠𝑖2} be the set of student-school pairs involving school 𝑠𝑖2 in cycle 𝑐𝑙

𝑘
. Let 

𝑙̂(𝑠𝑖2) = #𝜇′′
𝑘,𝑙
(𝑠𝑖2) + #𝑃 (𝑠𝑖2). From 𝜇′′

𝑘,𝑙
, looking forward towards 𝜇𝐸 , each student 𝑖 ∈ 𝐼1(𝑐𝑙

𝑘
) matches with school 𝑠𝑖2. In the case 

more students are assigned to some school than the number of available slots, then students with a lower priority are dropped 
off. Hence, from 𝜇′′

𝑘,𝑙
we reach the matching

𝜇2𝑘,𝑙 = 𝜇
′′
𝑘,𝑙 + {(𝑖, 𝑠𝑖2) ∣ 𝑖 ∈ 𝐼1(𝑐𝑙𝑘)}

−
{
(𝑗𝑙′ , 𝑠𝑖

12) ∣ 𝐹
𝑠𝑖
12 (𝑗𝑙′ ) > 𝐹𝑠𝑖12 (𝑗

′) for all 𝑗′ ∈ 𝜇′′𝑘,𝑙(𝑠
𝑖12), 𝑗′ ≠ 𝑗𝑙′

}𝑙̂(𝑠𝑖12)
𝑙′=1

if 𝑙̂(𝑠𝑖12) ≥ 𝑞
𝑠𝑖
12

−
{
(𝑗𝑙′ , 𝑠𝑖

22) ∣ 𝐹
𝑠𝑖
22 (𝑗𝑙′ ) > 𝐹𝑠𝑖22 (𝑗

′) for all 𝑗′ ∈ 𝜇′′𝑘,𝑙(𝑠
𝑖22), 𝑗′ ≠ 𝑗𝑙′

}𝑙̂(𝑠𝑖22)
𝑙′=1

if 𝑙̂(𝑠𝑖22) ≥ 𝑞
𝑠𝑖
22

⋮

−
{
(𝑗𝑙′ , 𝑠𝑖

𝑠̄2) ∣ 𝐹
𝑠𝑖
𝑠̄2 (𝑗𝑙′ ) > 𝐹𝑠𝑖𝑠̄2 (𝑗

′) for all 𝑗′ ∈ 𝜇′′𝑘,𝑙(𝑠
𝑖𝑠̄2), 𝑗′ ≠ 𝑗𝑙′

}𝑙̂(𝑠𝑖𝑠̄2)
𝑙′=1

if 𝑙̂(𝑠𝑖𝑠̄2) ≥ 𝑞
𝑠𝑖
𝑠̄2 ,

where {𝑠𝑖12, 𝑠𝑖22, … , 𝑠𝑖𝑠̄2} = {𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖2 for 𝑖 ∈ 𝐼1(𝑐𝑙
𝑘
)} and 𝑠̄ = #{𝑠 ∈ 𝑆 ∣ 𝑠 = 𝑠𝑖2 for 𝑖 ∈ 𝐼1(𝑐𝑙

𝑘
)}.

Looking forward towards 𝜇𝐸 students belonging to 𝐼1(𝑐𝑙
𝑘
) prefer 𝜇𝐸 to 𝜇2

𝑘,𝑙
. Next, each student 𝑖 ∈ 𝐼1(𝑐𝑙

𝑘
) leaves her school 𝑠𝑖2

to become unmatched and guaranteeing a free slot at school 𝑠𝑖2 . We reach 𝜇2′
𝑘,𝑙

= 𝜇2
𝑘,𝑙

− {(𝑖, 𝑠𝑖2) ∣ 𝑖 ∈ 𝐼1(𝑐𝑙
𝑘
)}.

Next, we repeat this process with students who are involved more than twice in cycle 𝑐𝑙
𝑘

until we reach in the end the matching 

𝜇′′′
𝑘,𝑙

= 𝜇
𝜏(𝑐𝑙

𝑘
)

𝑘,𝑙
− {(𝑖, 𝑠𝑖𝜏(𝑐

𝑙
𝑘
)) ∣ 𝑖 ∈ 𝐼𝜏(𝑐

𝑙
𝑘
)−1(𝑐𝑙

𝑘
)} where all students involved in 𝑐𝑙

𝑘
are unmatched and each school 𝑠 involved in 𝑐𝑙

𝑘
has 

at least #{(𝑖, 𝑠′) ∈ 𝑐𝑙
𝑘
∣ 𝑠′ = 𝑠} free slots.
162

If 𝑙 ≠𝐿𝑘, then go to Step 𝑘.𝑙+1. Otherwise, go to Step 𝑘.End with 𝜇′′′
𝑘,𝐿1

= 𝜇′′′
𝑘,𝑙

.
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Step 𝑘.End. We have reached 𝜇′′′
𝑘,𝐿𝑘

where each student 𝑖 involved in 𝐶𝑘 is either matched to 𝜇𝐸 (𝑖) or unmatched and each school 

𝑠 involved in 𝐶𝑘 has at least #{(𝑖, 𝑠′) ∈
⋃𝐿𝑘
𝑙=1 𝑐

𝑙
𝑘
∣ 𝑠′ = 𝑠 and 𝜇′′′

𝑘,𝐿𝑘
(𝑖) ≠ 𝜇𝐸 (𝑖)} free slots. Next, those unmatched students join the 

school they point to in 𝐶𝑘 to form the matching 𝜇𝑘 = 𝜇′′′𝑘,𝐿𝑘 + {(𝑖, 𝑠) ∈𝑀𝑘 ∣ (𝑖, 𝑠) ∉ 𝜇′′′𝑘,𝐿𝑘} so that each student 𝑖 involved in 𝐶𝑘 is 
matched to her school 𝜇𝐸 (𝑖). If 𝜇𝑘 = 𝜇𝐸 then the process ends. Otherwise, go to Step 𝑘+1.

End. The process goes on until we reach 𝜇𝑘̄ =
⋃𝑘̄
𝑘=1𝑀𝑘 = 𝜇𝐸 , where 𝑘̄ ≥ 1. □

Data availability

No data was used for the research described in the article.
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